Files
DB-GPT/pilot/embedding_engine/embedding_engine.py

89 lines
3.5 KiB
Python

from typing import Optional
from chromadb.errors import NotEnoughElementsException
from langchain.text_splitter import TextSplitter
from pilot.embedding_engine.embedding_factory import (
EmbeddingFactory,
DefaultEmbeddingFactory,
)
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding, KnowledgeType
from pilot.vector_store.connector import VectorStoreConnector
class EmbeddingEngine:
"""EmbeddingEngine provide a chain process include(read->text_split->data_process->index_store) for knowledge document embedding into vector store.
1.knowledge_embedding:knowledge document source into vector store.(Chroma, Milvus, Weaviate)
2.similar_search: similarity search from vector_store
how to use reference:https://db-gpt.readthedocs.io/en/latest/modules/knowledge.html
how to integrate:https://db-gpt.readthedocs.io/en/latest/modules/knowledge/pdf/pdf_embedding.html
"""
def __init__(
self,
model_name,
vector_store_config,
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
knowledge_source: Optional[str] = None,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
embedding_factory: EmbeddingFactory = None,
):
"""Initialize with knowledge embedding client, model_name, vector_store_config, knowledge_type, knowledge_source"""
self.knowledge_source = knowledge_source
self.model_name = model_name
self.vector_store_config = vector_store_config
self.knowledge_type = knowledge_type
if not embedding_factory:
embedding_factory = DefaultEmbeddingFactory()
self.embeddings = embedding_factory.create(model_name=self.model_name)
self.vector_store_config["embeddings"] = self.embeddings
self.source_reader = source_reader
self.text_splitter = text_splitter
def knowledge_embedding(self):
"""source embedding is chain process.read->text_split->data_process->index_store"""
self.knowledge_embedding_client = self.init_knowledge_embedding()
self.knowledge_embedding_client.source_embedding()
def knowledge_embedding_batch(self, docs):
"""Deprecation"""
# docs = self.knowledge_embedding_client.read_batch()
return self.knowledge_embedding_client.index_to_store(docs)
def read(self):
"""Deprecation"""
self.knowledge_embedding_client = self.init_knowledge_embedding()
return self.knowledge_embedding_client.read_batch()
def init_knowledge_embedding(self):
return get_knowledge_embedding(
self.knowledge_type,
self.knowledge_source,
self.vector_store_config,
self.source_reader,
self.text_splitter,
)
def similar_search(self, text, topk):
vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
try:
ans = vector_client.similar_search(text, topk)
except NotEnoughElementsException:
ans = vector_client.similar_search(text, 1)
return ans
def vector_exist(self):
vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
return vector_client.vector_name_exists()
def delete_by_ids(self, ids):
vector_client = VectorStoreConnector(
self.vector_store_config["vector_store_type"], self.vector_store_config
)
vector_client.delete_by_ids(ids=ids)