Files
DB-GPT/pilot/embedding_engine/markdown_embedding.py
aries_ckt 7186309f83 feat:knowledge document delete
1.space delete
2.document delete
2023-07-31 16:47:48 +08:00

70 lines
2.2 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
from typing import List, Optional
import markdown
from bs4 import BeautifulSoup
from langchain.schema import Document
from langchain.text_splitter import (
SpacyTextSplitter,
CharacterTextSplitter,
RecursiveCharacterTextSplitter,
TextSplitter,
)
from pilot.embedding_engine import SourceEmbedding, register
from pilot.embedding_engine.encode_text_loader import EncodeTextLoader
class MarkdownEmbedding(SourceEmbedding):
"""markdown embedding for read markdown document."""
def __init__(
self,
file_path,
vector_store_config,
source_reader: Optional = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize raw text word path."""
super().__init__(
file_path, vector_store_config, source_reader=None, text_splitter=None
)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.source_reader = source_reader or None
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from markdown path."""
if self.source_reader is None:
self.source_reader = EncodeTextLoader(self.file_path)
if self.text_splitter is None:
try:
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=100,
chunk_overlap=100,
)
except Exception:
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return self.source_reader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
content = markdown.markdown(d.page_content)
soup = BeautifulSoup(content, "html.parser")
for tag in soup(["!doctype", "meta", "i.fa"]):
tag.extract()
documents[i].page_content = soup.get_text()
documents[i].page_content = documents[i].page_content.replace("\n", " ")
i += 1
return documents