Files
DB-GPT/pilot/model/base.py

87 lines
1.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from enum import Enum
from typing import TypedDict, Optional, Dict, List
from dataclasses import dataclass
from datetime import datetime
from pilot.utils.parameter_utils import ParameterDescription
class Message(TypedDict):
"""LLM Message object containing usually like (role: content)"""
role: str
content: str
@dataclass
class ModelInstance:
"""Model instance info"""
model_name: str
host: str
port: int
weight: Optional[float] = 1.0
check_healthy: Optional[bool] = True
healthy: Optional[bool] = False
enabled: Optional[bool] = True
prompt_template: Optional[str] = None
last_heartbeat: Optional[datetime] = None
class WorkerApplyType(str, Enum):
START = "start"
STOP = "stop"
RESTART = "restart"
UPDATE_PARAMS = "update_params"
@dataclass
class ModelOutput:
text: str
error_code: int
model_context: Dict = None
@dataclass
class WorkerApplyOutput:
message: str
success: Optional[bool] = True
# The seconds cost to apply some action to worker instances
timecost: Optional[int] = -1
@dataclass
class SupportedModel:
model: str
path: str
worker_type: str
path_exist: bool
proxy: bool
enabled: bool
params: List[ParameterDescription]
@classmethod
def from_dict(cls, model_data: Dict) -> "SupportedModel":
params = model_data.get("params", [])
if params:
params = [ParameterDescription(**param) for param in params]
model_data["params"] = params
return cls(**model_data)
@dataclass
class WorkerSupportedModel:
host: str
port: int
models: List[SupportedModel]
@classmethod
def from_dict(cls, worker_data: Dict) -> "WorkerSupportedModel":
models = [
SupportedModel.from_dict(model_data) for model_data in worker_data["models"]
]
worker_data["models"] = models
return cls(**worker_data)