Files
DB-GPT/pilot/vector_store/milvus_store.py
2023-05-25 23:56:03 +08:00

324 lines
12 KiB
Python

from typing import Any, Iterable, List, Optional, Tuple
from langchain.docstore.document import Document
from pymilvus import Collection, DataType, connections, utility
from pilot.configs.config import Config
from pilot.vector_store.vector_store_base import VectorStoreBase
CFG = Config()
class MilvusStore(VectorStoreBase):
"""Milvus database"""
def __init__(self, ctx: {}) -> None:
"""init a milvus storage connection.
Args:
ctx ({}): MilvusStore global config.
"""
# self.configure(cfg)
connect_kwargs = {}
self.uri = CFG.MILVUS_URL
self.port = CFG.MILVUS_PORT
self.username = CFG.MILVUS_USERNAME
self.password = CFG.MILVUS_PASSWORD
self.collection_name = ctx.get("vector_store_name", None)
self.secure = ctx.get("secure", None)
self.embedding = ctx.get("embeddings", None)
self.fields = []
self.alias = "default"
# use HNSW by default.
self.index_params = {
"metric_type": "L2",
"index_type": "HNSW",
"params": {"M": 8, "efConstruction": 64},
}
# use HNSW by default.
self.index_params_map = {
"IVF_FLAT": {"params": {"nprobe": 10}},
"IVF_SQ8": {"params": {"nprobe": 10}},
"IVF_PQ": {"params": {"nprobe": 10}},
"HNSW": {"params": {"ef": 10}},
"RHNSW_FLAT": {"params": {"ef": 10}},
"RHNSW_SQ": {"params": {"ef": 10}},
"RHNSW_PQ": {"params": {"ef": 10}},
"IVF_HNSW": {"params": {"nprobe": 10, "ef": 10}},
"ANNOY": {"params": {"search_k": 10}},
}
# default collection schema
self.primary_field = "pk_id"
self.vector_field = "vector"
self.text_field = "content"
if (self.username is None) != (self.password is None):
raise ValueError(
"Both username and password must be set to use authentication for Milvus"
)
if self.username:
connect_kwargs["user"] = self.username
connect_kwargs["password"] = self.password
connections.connect(
host=self.uri or "127.0.0.1",
port=self.port or "19530",
alias="default"
# secure=self.secure,
)
def init_schema_and_load(self, vector_name, documents):
"""Create a Milvus collection, indexes it with HNSW, load document.
Args:
vector_name (Embeddings): your collection name.
documents (List[str]): Text to insert.
Returns:
VectorStore: The MilvusStore vector store.
"""
try:
from pymilvus import (
Collection,
CollectionSchema,
DataType,
FieldSchema,
connections,
)
from pymilvus.orm.types import infer_dtype_bydata
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
if not connections.has_connection("default"):
connections.connect(
host=self.uri or "127.0.0.1",
port=self.port or "19530",
alias="default"
# secure=self.secure,
)
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
embeddings = self.embedding.embed_query(texts[0])
if utility.has_collection(self.collection_name):
self.col = Collection(self.collection_name, using=self.alias)
self.fields = []
for x in self.col.schema.fields:
self.fields.append(x.name)
if x.auto_id:
self.fields.remove(x.name)
if x.is_primary:
self.primary_field = x.name
if (
x.dtype == DataType.FLOAT_VECTOR
or x.dtype == DataType.BINARY_VECTOR
):
self.vector_field = x.name
self._add_documents(texts, metadatas)
return self.collection_name
dim = len(embeddings)
# Generate unique names
primary_field = self.primary_field
vector_field = self.vector_field
text_field = self.text_field
# self.text_field = text_field
collection_name = vector_name
fields = []
max_length = 0
for y in texts:
max_length = max(max_length, len(y))
# Create the text field
fields.append(FieldSchema(text_field, DataType.VARCHAR, max_length=65535))
# primary key field
fields.append(
FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True)
)
# vector field
fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim))
schema = CollectionSchema(fields)
# Create the collection
collection = Collection(collection_name, schema)
self.col = collection
# index parameters for the collection
index = self.index_params
# milvus index
collection.create_index(vector_field, index)
schema = collection.schema
for x in schema.fields:
self.fields.append(x.name)
if x.auto_id:
self.fields.remove(x.name)
if x.is_primary:
self.primary_field = x.name
if x.dtype == DataType.FLOAT_VECTOR or x.dtype == DataType.BINARY_VECTOR:
self.vector_field = x.name
self._add_documents(texts, metadatas)
return self.collection_name
# def init_schema(self) -> None:
# """Initialize collection in milvus database."""
# fields = [
# FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True),
# FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=self.model_config["dim"]),
# FieldSchema(name="raw_text", dtype=DataType.VARCHAR, max_length=65535),
# ]
#
# # create collection if not exist and load it.
# self.schema = CollectionSchema(fields, "db-gpt memory storage")
# self.collection = Collection(self.collection_name, self.schema)
# self.index_params_map = {
# "IVF_FLAT": {"params": {"nprobe": 10}},
# "IVF_SQ8": {"params": {"nprobe": 10}},
# "IVF_PQ": {"params": {"nprobe": 10}},
# "HNSW": {"params": {"ef": 10}},
# "RHNSW_FLAT": {"params": {"ef": 10}},
# "RHNSW_SQ": {"params": {"ef": 10}},
# "RHNSW_PQ": {"params": {"ef": 10}},
# "IVF_HNSW": {"params": {"nprobe": 10, "ef": 10}},
# "ANNOY": {"params": {"search_k": 10}},
# }
#
# self.index_params = {
# "metric_type": "IP",
# "index_type": "HNSW",
# "params": {"M": 8, "efConstruction": 64},
# }
# # create index if not exist.
# if not self.collection.has_index():
# self.collection.release()
# self.collection.create_index(
# "vector",
# self.index_params,
# index_name="vector",
# )
# info = self.collection.describe()
# self.collection.load()
# def insert(self, text, model_config) -> str:
# """Add an embedding of data into milvus.
# Args:
# text (str): The raw text to construct embedding index.
# Returns:
# str: log.
# """
# # embedding = get_ada_embedding(data)
# embeddings = HuggingFaceEmbeddings(model_name=self.model_config["model_name"])
# result = self.collection.insert([embeddings.embed_documents(text), text])
# _text = (
# "Inserting data into memory at primary key: "
# f"{result.primary_keys[0]}:\n data: {text}"
# )
# return _text
def _add_documents(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
partition_name: Optional[str] = None,
timeout: Optional[int] = None,
) -> List[str]:
"""add text data into Milvus."""
insert_dict: Any = {self.text_field: list(texts)}
try:
insert_dict[self.vector_field] = self.embedding.embed_documents(list(texts))
except NotImplementedError:
insert_dict[self.vector_field] = [
self.embedding.embed_query(x) for x in texts
]
# Collect the metadata into the insert dict.
if len(self.fields) > 2 and metadatas is not None:
for d in metadatas:
for key, value in d.items():
if key in self.fields:
insert_dict.setdefault(key, []).append(value)
# Convert dict to list of lists for insertion
insert_list = [insert_dict[x] for x in self.fields]
# Insert into the collection.
res = self.col.insert(
insert_list, partition_name=partition_name, timeout=timeout
)
# make sure data is searchable.
self.col.flush()
return res.primary_keys
def load_document(self, documents) -> None:
"""load document in vector database."""
# self.init_schema_and_load(self.collection_name, documents)
batch_size = 500
batched_list = [
documents[i : i + batch_size] for i in range(0, len(documents), batch_size)
]
# docs = []
for doc_batch in batched_list:
self.init_schema_and_load(self.collection_name, doc_batch)
def similar_search(self, text, topk) -> None:
"""similar_search in vector database."""
self.col = Collection(self.collection_name)
schema = self.col.schema
for x in schema.fields:
self.fields.append(x.name)
if x.auto_id:
self.fields.remove(x.name)
if x.is_primary:
self.primary_field = x.name
if x.dtype == DataType.FLOAT_VECTOR or x.dtype == DataType.BINARY_VECTOR:
self.vector_field = x.name
_, docs_and_scores = self._search(text, topk)
return [doc for doc, _, _ in docs_and_scores]
def _search(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
partition_names: Optional[List[str]] = None,
round_decimal: int = -1,
timeout: Optional[int] = None,
**kwargs: Any,
) -> Tuple[List[float], List[Tuple[Document, Any, Any]]]:
self.col.load()
# use default index params.
if param is None:
index_type = self.col.indexes[0].params["index_type"]
param = self.index_params_map[index_type]
# query text embedding.
data = [self.embedding.embed_query(query)]
# Determine result metadata fields.
output_fields = self.fields[:]
output_fields.remove(self.vector_field)
# milvus search.
res = self.col.search(
data,
self.vector_field,
param,
k,
expr=expr,
output_fields=output_fields,
partition_names=partition_names,
round_decimal=round_decimal,
timeout=timeout,
**kwargs,
)
ret = []
for result in res[0]:
meta = {x: result.entity.get(x) for x in output_fields}
ret.append(
(
Document(page_content=meta.pop(self.text_field), metadata=meta),
result.distance,
result.id,
)
)
return data[0], ret
def close(self):
connections.disconnect()