Files
DB-GPT/tools/knowlege_init.py
2023-06-05 18:08:55 +08:00

54 lines
1.8 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
from pilot.configs.config import Config
from pilot.configs.model_config import (
DATASETS_DIR,
LLM_MODEL_CONFIG,
)
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
CFG = Config()
class LocalKnowledgeInit:
embeddings: object = None
def __init__(self, vector_store_config) -> None:
self.vector_store_config = vector_store_config
self.model_name = LLM_MODEL_CONFIG["text2vec"]
def knowledge_persist(self, file_path, append_mode):
"""knowledge persist"""
for root, _, files in os.walk(file_path, topdown=False):
for file in files:
filename = os.path.join(root, file)
# docs = self._load_file(filename)
ke = KnowledgeEmbedding(
file_path=filename,
model_name=self.model_name,
vector_store_config=self.vector_store_config,
)
client = ke.init_knowledge_embedding()
client.source_embedding()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--vector_name", type=str, default="default")
parser.add_argument("--append", type=bool, default=False)
args = parser.parse_args()
vector_name = args.vector_name
append_mode = args.append
store_type = CFG.VECTOR_STORE_TYPE
vector_store_config = {"vector_store_name": vector_name}
print(vector_store_config)
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
kv.knowledge_persist(file_path=DATASETS_DIR, append_mode=append_mode)
print("your knowledge embedding success...")