mirror of
				https://github.com/csunny/DB-GPT.git
				synced 2025-11-04 09:19:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			82 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			82 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import json
 | 
						||
from pilot.prompts.prompt_new import PromptTemplate
 | 
						||
from pilot.configs.config import Config
 | 
						||
from pilot.scene.base import ChatScene
 | 
						||
from pilot.scene.chat_data.chat_excel.excel_learning.out_parser import (
 | 
						||
    LearningExcelOutputParser,
 | 
						||
)
 | 
						||
from pilot.common.schema import SeparatorStyle
 | 
						||
 | 
						||
CFG = Config()
 | 
						||
 | 
						||
_PROMPT_SCENE_DEFINE_EN = "You are a data analysis expert. "
 | 
						||
 | 
						||
_DEFAULT_TEMPLATE_EN = """
 | 
						||
This is an example data,please learn to understand the structure and content of this data:
 | 
						||
    {data_example}
 | 
						||
Explain the meaning and function of each column, and give a simple and clear explanation of the technical terms.  
 | 
						||
Provide some analysis options,please think step by step.
 | 
						||
 | 
						||
Please return your answer in JSON format, the return format is as follows:
 | 
						||
    {response}
 | 
						||
"""
 | 
						||
 | 
						||
_PROMPT_SCENE_DEFINE_ZH = "你是一个数据分析专家. "
 | 
						||
 | 
						||
_DEFAULT_TEMPLATE_ZH = """
 | 
						||
下面是一份示例数据,请学习理解该数据的结构和内容:
 | 
						||
    {data_example}
 | 
						||
分析各列数据的含义和作用,并对专业术语进行简单明了的解释。
 | 
						||
提供一些分析方案思路,请一步一步思考。
 | 
						||
 | 
						||
请以JSON格式返回您的答案,返回格式如下:
 | 
						||
    {response}
 | 
						||
"""
 | 
						||
 | 
						||
_RESPONSE_FORMAT_SIMPLE_ZH = {
 | 
						||
    "DataAnalysis": "数据内容分析总结",
 | 
						||
    "ColumnAnalysis": [{"column name1": "字段1介绍,专业术语解释(请尽量简单明了)"}],
 | 
						||
    "AnalysisProgram": ["1.分析方案1,图表展示方式1", "2.分析方案2,图表展示方式2"],
 | 
						||
}
 | 
						||
_RESPONSE_FORMAT_SIMPLE_EN = {
 | 
						||
    "DataAnalysis": "Data content analysis summary",
 | 
						||
    "ColumnAnalysis": [{"column name1": "Introduction to Column 1 and explanation of professional terms (please try to be as simple and clear as possible)"}],
 | 
						||
    "AnalysisProgram": ["1. Analysis plan 1, chart display type 1", "2. Analysis plan 2, chart display type 2"],
 | 
						||
}
 | 
						||
 | 
						||
RESPONSE_FORMAT_SIMPLE =(_RESPONSE_FORMAT_SIMPLE_EN if CFG.LANGUAGE == "en" else _RESPONSE_FORMAT_SIMPLE_ZH)
 | 
						||
 | 
						||
 | 
						||
_DEFAULT_TEMPLATE = (
 | 
						||
    _DEFAULT_TEMPLATE_EN if CFG.LANGUAGE == "en" else _DEFAULT_TEMPLATE_ZH
 | 
						||
)
 | 
						||
 | 
						||
PROMPT_SCENE_DEFINE = (
 | 
						||
    _PROMPT_SCENE_DEFINE_EN if CFG.LANGUAGE == "en" else _PROMPT_SCENE_DEFINE_ZH
 | 
						||
)
 | 
						||
 | 
						||
 | 
						||
PROMPT_SEP = SeparatorStyle.SINGLE.value
 | 
						||
 | 
						||
PROMPT_NEED_NEED_STREAM_OUT = False
 | 
						||
 | 
						||
# Temperature is a configuration hyperparameter that controls the randomness of language model output.
 | 
						||
# A high temperature produces more unpredictable and creative results, while a low temperature produces more common and conservative output.
 | 
						||
# For example, if you adjust the temperature to 0.5, the model will usually generate text that is more predictable and less creative than if you set the temperature to 1.0.
 | 
						||
PROMPT_TEMPERATURE = 0.5
 | 
						||
 | 
						||
prompt = PromptTemplate(
 | 
						||
    template_scene=ChatScene.ExcelLearning.value(),
 | 
						||
    input_variables=["data_example"],
 | 
						||
    response_format=json.dumps(RESPONSE_FORMAT_SIMPLE, ensure_ascii=False, indent=4),
 | 
						||
    template_define=PROMPT_SCENE_DEFINE,
 | 
						||
    template=_DEFAULT_TEMPLATE,
 | 
						||
    stream_out=PROMPT_NEED_NEED_STREAM_OUT,
 | 
						||
    output_parser=LearningExcelOutputParser(
 | 
						||
        sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
 | 
						||
    ),
 | 
						||
    # example_selector=sql_data_example,
 | 
						||
    temperature=PROMPT_TEMPERATURE,
 | 
						||
)
 | 
						||
CFG.prompt_template_registry.register(prompt, is_default=True)
 |