Files
DB-GPT/pilot/server/webserver.py
2023-05-25 20:39:04 +08:00

655 lines
22 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import datetime
import json
import os
import shutil
import sys
import time
import uuid
from urllib.parse import urljoin
import gradio as gr
import requests
from langchain import PromptTemplate
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(ROOT_PATH)
from pilot.commands.command_mange import CommandRegistry
from pilot.scene.base_chat import BaseChat
from pilot.configs.config import Config
from pilot.configs.model_config import (
DATASETS_DIR,
KNOWLEDGE_UPLOAD_ROOT_PATH,
LLM_MODEL_CONFIG,
LOGDIR,
VECTOR_SEARCH_TOP_K,
)
from pilot.connections.mysql import MySQLOperator
from pilot.conversation import (
SeparatorStyle,
conv_qa_prompt_template,
conv_templates,
conversation_sql_mode,
conversation_types,
default_conversation,
)
from pilot.plugins import scan_plugins
from pilot.prompts.auto_mode_prompt import AutoModePrompt
from pilot.prompts.generator import PromptGenerator
from pilot.server.gradio_css import code_highlight_css
from pilot.server.gradio_patch import Chatbot as grChatbot
from pilot.server.vectordb_qa import KnownLedgeBaseQA
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
from pilot.utils import build_logger, server_error_msg
from pilot.vector_store.extract_tovec import (
get_vector_storelist,
knownledge_tovec_st,
load_knownledge_from_doc,
)
from pilot.commands.command import execute_ai_response_json
from pilot.scene.base import ChatScene
from pilot.scene.chat_factory import ChatFactory
logger = build_logger("webserver", LOGDIR + "webserver.log")
headers = {"User-Agent": "dbgpt Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=True)
enable_moderation = False
models = []
dbs = []
vs_list = ["新建知识库"] + get_vector_storelist()
autogpt = False
vector_store_client = None
vector_store_name = {"vs_name": ""}
priority = {"vicuna-13b": "aaa"}
# 加载插件
CFG = Config()
CHAT_FACTORY = ChatFactory()
DB_SETTINGS = {
"user": CFG.LOCAL_DB_USER,
"password": CFG.LOCAL_DB_PASSWORD,
"host": CFG.LOCAL_DB_HOST,
"port": CFG.LOCAL_DB_PORT,
}
def get_simlar(q):
docsearch = knownledge_tovec_st(os.path.join(DATASETS_DIR, "plan.md"))
docs = docsearch.similarity_search_with_score(q, k=1)
contents = [dc.page_content for dc, _ in docs]
return "\n".join(contents)
def gen_sqlgen_conversation(dbname):
mo = MySQLOperator(**DB_SETTINGS)
message = ""
schemas = mo.get_schema(dbname)
for s in schemas:
message += s["schema_info"] + ";"
return f"数据库{dbname}的Schema信息如下: {message}\n"
def get_database_list():
mo = MySQLOperator(**DB_SETTINGS)
return mo.get_db_list()
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
# dbs = get_database_list()
dropdown_update = gr.Dropdown.update(visible=True)
if dbs:
gr.Dropdown.update(choices=dbs)
state = default_conversation.copy()
unique_id = uuid.uuid1()
state.conv_id = str(unique_id)
return (
state,
dropdown_update,
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True),
)
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def regenerate(state, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
state.skip_next = False
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = None
return (state, [], "") + (disable_btn,) * 5
def add_text(state, text, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "") + (no_change_btn,) * 5
""" Default support 4000 tokens, if tokens too lang, we will cut off """
text = text[:4000]
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
### TODO
state.last_user_input = text
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5
def post_process_code(code):
sep = "\n```"
if sep in code:
blocks = code.split(sep)
if len(blocks) % 2 == 1:
for i in range(1, len(blocks), 2):
blocks[i] = blocks[i].replace("\\_", "_")
code = sep.join(blocks)
return code
def get_chat_mode(mode, sql_mode, db_selector) -> ChatScene:
if mode == conversation_types["default_knownledge"] and not db_selector:
return ChatScene.ChatKnowledge
elif mode == conversation_types["custome"] and not db_selector:
return ChatScene.ChatNewKnowledge
elif sql_mode == conversation_sql_mode["auto_execute_ai_response"] and db_selector:
return ChatScene.ChatWithDb
elif mode == conversation_types["auto_execute_plugin"] and not db_selector:
return ChatScene.ChatExecution
else:
return ChatScene.ChatNormal
def http_bot(
state, mode, sql_mode, db_selector, temperature, max_new_tokens, request: gr.Request
):
logger.info(f"User message send!{state.conv_id},{sql_mode},{db_selector}")
start_tstamp = time.time()
scene: ChatScene = get_chat_mode(mode, sql_mode, db_selector)
print(f"当前对话模式:{scene.value}")
model_name = CFG.LLM_MODEL
if ChatScene.ChatWithDb == scene:
logger.info("基于DB对话走新的模式")
chat_param = {
"chat_session_id": state.conv_id,
"db_name": db_selector,
"user_input": state.last_user_input,
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
chat.call()
state.messages[-1][-1] = f"{chat.current_ai_response()}"
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
else:
dbname = db_selector
# TODO 这里的请求需要拼接现有知识库, 使得其根据现有知识库作答, 所以prompt需要继续优化
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
query = state.messages[-2][1]
template_name = "conv_one_shot"
new_state = conv_templates[template_name].copy()
# prompt 中添加上下文提示, 根据已有知识对话, 上下文提示是否也应该放在第一轮, 还是每一轮都添加上下文?
# 如果用户侧的问题跨度很大, 应该每一轮都加提示。
if db_selector:
new_state.append_message(
new_state.roles[0], gen_sqlgen_conversation(dbname) + query
)
new_state.append_message(new_state.roles[1], None)
else:
new_state.append_message(new_state.roles[0], query)
new_state.append_message(new_state.roles[1], None)
new_state.conv_id = uuid.uuid4().hex
state = new_state
prompt = state.get_prompt()
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
if mode == conversation_types["default_knownledge"] and not db_selector:
query = state.messages[-2][1]
knqa = KnownLedgeBaseQA()
state.messages[-2][1] = knqa.get_similar_answer(query)
prompt = state.get_prompt()
state.messages[-2][1] = query
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
if mode == conversation_types["custome"] and not db_selector:
persist_dir = os.path.join(
KNOWLEDGE_UPLOAD_ROOT_PATH, vector_store_name["vs_name"] + ".vectordb"
)
print("向量数据库持久化地址: ", persist_dir)
knowledge_embedding_client = KnowledgeEmbedding(
file_path="",
model_name=LLM_MODEL_CONFIG["sentence-transforms"],
local_persist=False,
vector_store_config={
"vector_store_name": vector_store_name["vs_name"],
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
},
)
query = state.messages[-2][1]
docs = knowledge_embedding_client.similar_search(query, 1)
context = [d.page_content for d in docs]
prompt_template = PromptTemplate(
template=conv_qa_prompt_template,
input_variables=["context", "question"],
)
result = prompt_template.format(context="\n".join(context), question=query)
state.messages[-2][1] = result
prompt = state.get_prompt()
state.messages[-2][1] = query
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
# Make requests
payload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"max_new_tokens": int(max_new_tokens),
"stop": state.sep
if state.sep_style == SeparatorStyle.SINGLE
else state.sep2,
}
logger.info(f"Requert: \n{payload}")
# 流式输出
state.messages[-1][-1] = ""
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
response = requests.post(
urljoin(CFG.MODEL_SERVER, "generate_stream"),
headers=headers,
json=payload,
stream=True,
timeout=20,
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][skip_echo_len:].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + ""
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg + f" (error_code: 4)"
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
# 记录运行日志
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
block_css = (
code_highlight_css
+ """
pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
#notice_markdown th {
display: none;
}
"""
)
def change_sql_mode(sql_mode):
if sql_mode in ["直接执行结果"]:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def change_mode(mode):
if mode in ["默认知识库对话", "LLM原生对话"]:
return gr.update(visible=False)
else:
return gr.update(visible=True)
def change_tab():
autogpt = True
def build_single_model_ui():
notice_markdown = """
# DB-GPT
[DB-GPT](https://github.com/csunny/DB-GPT) 是一个开源的以数据库为基础的GPT实验项目使用本地化的GPT大模型与您的数据和环境进行交互无数据泄露风险100% 私密100% 安全。
"""
learn_more_markdown = """
### Licence
The service is a research preview intended for non-commercial use only. subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of Vicuna-13B
"""
state = gr.State()
gr.Markdown(notice_markdown, elem_id="notice_markdown")
with gr.Accordion("参数", open=False, visible=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Temperature",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=1024,
value=512,
step=64,
interactive=True,
label="最大输出Token数",
)
tabs = gr.Tabs()
with tabs:
tab_sql = gr.TabItem("SQL生成与诊断", elem_id="SQL")
with tab_sql:
# TODO A selector to choose database
with gr.Row(elem_id="db_selector"):
db_selector = gr.Dropdown(
label="请选择数据库",
choices=dbs,
value=dbs[0] if len(models) > 0 else "",
interactive=True,
show_label=True,
).style(container=False)
sql_mode = gr.Radio(["直接执行结果", "不执行结果"], show_label=False, value="不执行结果")
sql_vs_setting = gr.Markdown("自动执行模式下, DB-GPT可以具备执行SQL、从网络读取知识自动化存储学习的能力")
sql_mode.change(fn=change_sql_mode, inputs=sql_mode, outputs=sql_vs_setting)
tab_qa = gr.TabItem("知识问答", elem_id="QA")
with tab_qa:
mode = gr.Radio(
["LLM原生对话", "默认知识库对话", "新增知识库对话"], show_label=False, value="LLM原生对话"
)
vs_setting = gr.Accordion("配置知识库", open=False)
mode.change(fn=change_mode, inputs=mode, outputs=vs_setting)
with vs_setting:
vs_name = gr.Textbox(label="新知识库名称", lines=1, interactive=True)
vs_add = gr.Button("添加为新知识库")
with gr.Column() as doc2vec:
gr.Markdown("向知识库中添加文件")
with gr.Tab("上传文件"):
files = gr.File(
label="添加文件",
file_types=[".txt", ".md", ".docx", ".pdf"],
file_count="multiple",
allow_flagged_uploads=True,
show_label=False,
)
load_file_button = gr.Button("上传并加载到知识库")
with gr.Tab("上传文件夹"):
folder_files = gr.File(
label="添加文件夹",
accept_multiple_files=True,
file_count="directory",
show_label=False,
)
load_folder_button = gr.Button("上传并加载到知识库")
with gr.Blocks():
chatbot = grChatbot(elem_id="chatbot", visible=False).style(height=550)
with gr.Row():
with gr.Column(scale=20):
textbox = gr.Textbox(
show_label=False,
placeholder="Enter text and press ENTER",
visible=False,
).style(container=False)
with gr.Column(scale=2, min_width=50):
send_btn = gr.Button(value="发送", visible=False)
with gr.Row(visible=False) as button_row:
regenerate_btn = gr.Button(value="重新生成", interactive=False)
clear_btn = gr.Button(value="清理", interactive=False)
gr.Markdown(learn_more_markdown)
btn_list = [regenerate_btn, clear_btn]
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
http_bot,
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
textbox.submit(
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
).then(
http_bot,
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list,
)
send_btn.click(
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
).then(
http_bot,
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list,
)
vs_add.click(
fn=save_vs_name, show_progress=True, inputs=[vs_name], outputs=[vs_name]
)
load_file_button.click(
fn=knowledge_embedding_store,
show_progress=True,
inputs=[vs_name, files],
outputs=[vs_name],
)
load_folder_button.click(
fn=knowledge_embedding_store,
show_progress=True,
inputs=[vs_name, folder_files],
outputs=[vs_name],
)
return state, chatbot, textbox, send_btn, button_row, parameter_row
def build_webdemo():
with gr.Blocks(
title="数据库智能助手",
# theme=gr.themes.Base(),
theme=gr.themes.Default(),
css=block_css,
) as demo:
url_params = gr.JSON(visible=False)
(
state,
chatbot,
textbox,
send_btn,
button_row,
parameter_row,
) = build_single_model_ui()
if args.model_list_mode == "once":
demo.load(
load_demo,
[url_params],
[
state,
chatbot,
textbox,
send_btn,
button_row,
parameter_row,
],
_js=get_window_url_params,
)
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
return demo
def save_vs_name(vs_name):
vector_store_name["vs_name"] = vs_name
return vs_name
def knowledge_embedding_store(vs_id, files):
# vs_path = os.path.join(VS_ROOT_PATH, vs_id)
if not os.path.exists(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id)):
os.makedirs(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id))
for file in files:
filename = os.path.split(file.name)[-1]
shutil.move(
file.name, os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename)
)
knowledge_embedding_client = KnowledgeEmbedding(
file_path=os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename),
model_name=LLM_MODEL_CONFIG["text2vec"],
local_persist=False,
vector_store_config={
"vector_store_name": vector_store_name["vs_name"],
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
},
)
knowledge_embedding_client.knowledge_embedding()
logger.info("knowledge embedding success")
return os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, vs_id + ".vectordb")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument(
"--model-list-mode", type=str, default="once", choices=["once", "reload"]
)
parser.add_argument("--share", default=False, action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
# 配置初始化
cfg = Config()
dbs = cfg.local_db.get_database_list()
cfg.set_plugins(scan_plugins(cfg, cfg.debug_mode))
# 加载插件可执行命令
command_categories = [
"pilot.commands.audio_text",
"pilot.commands.image_gen",
]
# 排除禁用命令
command_categories = [
x for x in command_categories if x not in cfg.disabled_command_categories
]
command_registry = CommandRegistry()
for command_category in command_categories:
command_registry.import_commands(command_category)
cfg.command_registry = command_registry
logger.info(args)
demo = build_webdemo()
demo.queue(
concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False
).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=200,
)