mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-22 09:28:42 +00:00
Co-authored-by: yyhhyy <95077259+Hui824@users.noreply.github.com> Co-authored-by: aries_ckt <916701291@qq.com> Co-authored-by: Fangyin Cheng <staneyffer@gmail.com>
637 lines
24 KiB
Python
637 lines
24 KiB
Python
import json
|
|
import logging
|
|
from datetime import datetime
|
|
from typing import List
|
|
|
|
from dbgpt._private.config import Config
|
|
from dbgpt.app.knowledge.chunk_db import DocumentChunkDao, DocumentChunkEntity
|
|
from dbgpt.app.knowledge.document_db import (
|
|
KnowledgeDocumentDao,
|
|
KnowledgeDocumentEntity,
|
|
)
|
|
from dbgpt.app.knowledge.request.request import (
|
|
ChunkQueryRequest,
|
|
DocumentQueryRequest,
|
|
DocumentSummaryRequest,
|
|
DocumentSyncRequest,
|
|
KnowledgeDocumentRequest,
|
|
KnowledgeSpaceRequest,
|
|
SpaceArgumentRequest,
|
|
)
|
|
from dbgpt.app.knowledge.request.response import (
|
|
ChunkQueryResponse,
|
|
DocumentQueryResponse,
|
|
SpaceQueryResponse,
|
|
)
|
|
from dbgpt.component import ComponentType
|
|
from dbgpt.configs.model_config import EMBEDDING_MODEL_CONFIG
|
|
from dbgpt.core import Chunk
|
|
from dbgpt.model import DefaultLLMClient
|
|
from dbgpt.rag.assembler.embedding import EmbeddingAssembler
|
|
from dbgpt.rag.assembler.summary import SummaryAssembler
|
|
from dbgpt.rag.chunk_manager import ChunkParameters
|
|
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
|
|
from dbgpt.rag.knowledge.base import ChunkStrategy, KnowledgeType
|
|
from dbgpt.rag.knowledge.factory import KnowledgeFactory
|
|
from dbgpt.rag.text_splitter.text_splitter import (
|
|
RecursiveCharacterTextSplitter,
|
|
SpacyTextSplitter,
|
|
)
|
|
from dbgpt.serve.rag.api.schemas import KnowledgeSyncRequest
|
|
from dbgpt.serve.rag.models.models import KnowledgeSpaceDao, KnowledgeSpaceEntity
|
|
from dbgpt.serve.rag.service.service import Service, SyncStatus
|
|
from dbgpt.storage.vector_store.base import VectorStoreConfig
|
|
from dbgpt.storage.vector_store.connector import VectorStoreConnector
|
|
from dbgpt.util.executor_utils import ExecutorFactory, blocking_func_to_async
|
|
from dbgpt.util.tracer import root_tracer, trace
|
|
|
|
knowledge_space_dao = KnowledgeSpaceDao()
|
|
knowledge_document_dao = KnowledgeDocumentDao()
|
|
document_chunk_dao = DocumentChunkDao()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
CFG = Config()
|
|
|
|
|
|
# default summary max iteration call with llm.
|
|
DEFAULT_SUMMARY_MAX_ITERATION = 5
|
|
# default summary concurrency call with llm.
|
|
DEFAULT_SUMMARY_CONCURRENCY_LIMIT = 3
|
|
|
|
|
|
class KnowledgeService:
|
|
"""KnowledgeService
|
|
Knowledge Management Service:
|
|
-knowledge_space management
|
|
-knowledge_document management
|
|
-embedding management
|
|
"""
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def create_knowledge_space(self, request: KnowledgeSpaceRequest):
|
|
"""create knowledge space
|
|
Args:
|
|
- request: KnowledgeSpaceRequest
|
|
"""
|
|
query = KnowledgeSpaceEntity(
|
|
name=request.name,
|
|
)
|
|
spaces = knowledge_space_dao.get_knowledge_space(query)
|
|
if len(spaces) > 0:
|
|
raise Exception(f"space name:{request.name} have already named")
|
|
space_id = knowledge_space_dao.create_knowledge_space(request)
|
|
return space_id
|
|
|
|
def create_knowledge_document(self, space, request: KnowledgeDocumentRequest):
|
|
"""create knowledge document
|
|
Args:
|
|
- request: KnowledgeDocumentRequest
|
|
"""
|
|
query = KnowledgeDocumentEntity(doc_name=request.doc_name, space=space)
|
|
documents = knowledge_document_dao.get_knowledge_documents(query)
|
|
if len(documents) > 0:
|
|
raise Exception(f"document name:{request.doc_name} have already named")
|
|
document = KnowledgeDocumentEntity(
|
|
doc_name=request.doc_name,
|
|
doc_type=request.doc_type,
|
|
space=space,
|
|
chunk_size=0,
|
|
status=SyncStatus.TODO.name,
|
|
last_sync=datetime.now(),
|
|
content=request.content,
|
|
result="",
|
|
)
|
|
doc_id = knowledge_document_dao.create_knowledge_document(document)
|
|
if doc_id is None:
|
|
raise Exception(f"create document failed, {request.doc_name}")
|
|
return doc_id
|
|
|
|
def get_knowledge_space(self, request: KnowledgeSpaceRequest):
|
|
"""get knowledge space
|
|
Args:
|
|
- request: KnowledgeSpaceRequest
|
|
"""
|
|
query = KnowledgeSpaceEntity(
|
|
name=request.name, vector_type=request.vector_type, owner=request.owner
|
|
)
|
|
spaces = knowledge_space_dao.get_knowledge_space(query)
|
|
space_names = [space.name for space in spaces]
|
|
docs_count = knowledge_document_dao.get_knowledge_documents_count_bulk(
|
|
space_names
|
|
)
|
|
responses = []
|
|
for space in spaces:
|
|
res = SpaceQueryResponse()
|
|
res.id = space.id
|
|
res.name = space.name
|
|
res.vector_type = space.vector_type
|
|
res.desc = space.desc
|
|
res.owner = space.owner
|
|
res.gmt_created = space.gmt_created
|
|
res.gmt_modified = space.gmt_modified
|
|
res.context = space.context
|
|
res.docs = docs_count.get(space.name, 0)
|
|
responses.append(res)
|
|
return responses
|
|
|
|
def arguments(self, space_name):
|
|
"""show knowledge space arguments
|
|
Args:
|
|
- space_name: Knowledge Space Name
|
|
"""
|
|
query = KnowledgeSpaceEntity(name=space_name)
|
|
spaces = knowledge_space_dao.get_knowledge_space(query)
|
|
if len(spaces) != 1:
|
|
raise Exception(f"there are no or more than one space called {space_name}")
|
|
space = spaces[0]
|
|
if space.context is None:
|
|
context = self._build_default_context()
|
|
else:
|
|
context = space.context
|
|
return json.loads(context)
|
|
|
|
def argument_save(self, space_name, argument_request: SpaceArgumentRequest):
|
|
"""save argument
|
|
Args:
|
|
- space_name: Knowledge Space Name
|
|
- argument_request: SpaceArgumentRequest
|
|
"""
|
|
query = KnowledgeSpaceEntity(name=space_name)
|
|
spaces = knowledge_space_dao.get_knowledge_space(query)
|
|
if len(spaces) != 1:
|
|
raise Exception(f"there are no or more than one space called {space_name}")
|
|
space = spaces[0]
|
|
space.context = argument_request.argument
|
|
return knowledge_space_dao.update_knowledge_space(space)
|
|
|
|
def get_knowledge_documents(self, space, request: DocumentQueryRequest):
|
|
"""get knowledge documents
|
|
Args:
|
|
- space: Knowledge Space Name
|
|
- request: DocumentQueryRequest
|
|
Returns:
|
|
- res DocumentQueryResponse
|
|
"""
|
|
res = DocumentQueryResponse()
|
|
if request.doc_ids and len(request.doc_ids) > 0:
|
|
res.data = knowledge_document_dao.documents_by_ids(request.doc_ids)
|
|
else:
|
|
query = KnowledgeDocumentEntity(
|
|
doc_name=request.doc_name,
|
|
doc_type=request.doc_type,
|
|
space=space,
|
|
status=request.status,
|
|
)
|
|
res.data = knowledge_document_dao.get_knowledge_documents(
|
|
query, page=request.page, page_size=request.page_size
|
|
)
|
|
res.total = knowledge_document_dao.get_knowledge_documents_count(query)
|
|
res.page = request.page
|
|
return res
|
|
|
|
def batch_document_sync(
|
|
self,
|
|
space_name,
|
|
sync_requests: List[KnowledgeSyncRequest],
|
|
) -> List[int]:
|
|
"""batch sync knowledge document chunk into vector store
|
|
Args:
|
|
- space: Knowledge Space Name
|
|
- sync_requests: List[KnowledgeSyncRequest]
|
|
Returns:
|
|
- List[int]: document ids
|
|
"""
|
|
doc_ids = []
|
|
for sync_request in sync_requests:
|
|
docs = knowledge_document_dao.documents_by_ids([sync_request.doc_id])
|
|
if len(docs) == 0:
|
|
raise Exception(
|
|
f"there are document called, doc_id: {sync_request.doc_id}"
|
|
)
|
|
doc = docs[0]
|
|
if (
|
|
doc.status == SyncStatus.RUNNING.name
|
|
or doc.status == SyncStatus.FINISHED.name
|
|
):
|
|
raise Exception(
|
|
f" doc:{doc.doc_name} status is {doc.status}, can not sync"
|
|
)
|
|
chunk_parameters = sync_request.chunk_parameters
|
|
if chunk_parameters.chunk_strategy != ChunkStrategy.CHUNK_BY_SIZE.name:
|
|
space_context = self.get_space_context(space_name)
|
|
chunk_parameters.chunk_size = (
|
|
CFG.KNOWLEDGE_CHUNK_SIZE
|
|
if space_context is None
|
|
else int(space_context["embedding"]["chunk_size"])
|
|
)
|
|
chunk_parameters.chunk_overlap = (
|
|
CFG.KNOWLEDGE_CHUNK_OVERLAP
|
|
if space_context is None
|
|
else int(space_context["embedding"]["chunk_overlap"])
|
|
)
|
|
self._sync_knowledge_document(space_name, doc, chunk_parameters)
|
|
doc_ids.append(doc.id)
|
|
return doc_ids
|
|
|
|
def sync_knowledge_document(self, space_name, sync_request: DocumentSyncRequest):
|
|
"""sync knowledge document chunk into vector store
|
|
Args:
|
|
- space: Knowledge Space Name
|
|
- sync_request: DocumentSyncRequest
|
|
"""
|
|
from dbgpt.rag.text_splitter.pre_text_splitter import PreTextSplitter
|
|
|
|
doc_ids = sync_request.doc_ids
|
|
self.model_name = sync_request.model_name or CFG.LLM_MODEL
|
|
for doc_id in doc_ids:
|
|
query = KnowledgeDocumentEntity(
|
|
id=doc_id,
|
|
space=space_name,
|
|
)
|
|
doc = knowledge_document_dao.get_knowledge_documents(query)[0]
|
|
if (
|
|
doc.status == SyncStatus.RUNNING.name
|
|
or doc.status == SyncStatus.FINISHED.name
|
|
):
|
|
raise Exception(
|
|
f" doc:{doc.doc_name} status is {doc.status}, can not sync"
|
|
)
|
|
|
|
space_context = self.get_space_context(space_name)
|
|
chunk_size = (
|
|
CFG.KNOWLEDGE_CHUNK_SIZE
|
|
if space_context is None
|
|
else int(space_context["embedding"]["chunk_size"])
|
|
)
|
|
chunk_overlap = (
|
|
CFG.KNOWLEDGE_CHUNK_OVERLAP
|
|
if space_context is None
|
|
else int(space_context["embedding"]["chunk_overlap"])
|
|
)
|
|
if sync_request.chunk_size:
|
|
chunk_size = sync_request.chunk_size
|
|
if sync_request.chunk_overlap:
|
|
chunk_overlap = sync_request.chunk_overlap
|
|
separators = sync_request.separators or None
|
|
from dbgpt.rag.chunk_manager import ChunkParameters
|
|
|
|
chunk_parameters = ChunkParameters(
|
|
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
|
)
|
|
if CFG.LANGUAGE == "en":
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
separators=separators,
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
length_function=len,
|
|
)
|
|
else:
|
|
if separators and len(separators) > 1:
|
|
raise ValueError(
|
|
"SpacyTextSplitter do not support multipsle separators"
|
|
)
|
|
try:
|
|
separator = "\n\n" if not separators else separators[0]
|
|
text_splitter = SpacyTextSplitter(
|
|
separator=separator,
|
|
pipeline="zh_core_web_sm",
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
)
|
|
except Exception:
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
separators=separators,
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
)
|
|
if sync_request.pre_separator:
|
|
logger.info(f"Use preseparator, {sync_request.pre_separator}")
|
|
text_splitter = PreTextSplitter(
|
|
pre_separator=sync_request.pre_separator,
|
|
text_splitter_impl=text_splitter,
|
|
)
|
|
chunk_parameters.text_splitter = text_splitter
|
|
self._sync_knowledge_document(space_name, doc, chunk_parameters)
|
|
return doc.id
|
|
|
|
def _sync_knowledge_document(
|
|
self,
|
|
space_name,
|
|
doc: KnowledgeDocumentEntity,
|
|
chunk_parameters: ChunkParameters,
|
|
) -> List[Chunk]:
|
|
"""sync knowledge document chunk into vector store"""
|
|
embedding_factory = CFG.SYSTEM_APP.get_component(
|
|
"embedding_factory", EmbeddingFactory
|
|
)
|
|
embedding_fn = embedding_factory.create(
|
|
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
|
|
)
|
|
from dbgpt.storage.vector_store.base import VectorStoreConfig
|
|
|
|
config = VectorStoreConfig(
|
|
name=space_name,
|
|
embedding_fn=embedding_fn,
|
|
max_chunks_once_load=CFG.KNOWLEDGE_MAX_CHUNKS_ONCE_LOAD,
|
|
)
|
|
vector_store_connector = VectorStoreConnector(
|
|
vector_store_type=CFG.VECTOR_STORE_TYPE,
|
|
vector_store_config=config,
|
|
)
|
|
knowledge = KnowledgeFactory.create(
|
|
datasource=doc.content,
|
|
knowledge_type=KnowledgeType.get_by_value(doc.doc_type),
|
|
)
|
|
assembler = EmbeddingAssembler.load_from_knowledge(
|
|
knowledge=knowledge,
|
|
chunk_parameters=chunk_parameters,
|
|
embeddings=embedding_fn,
|
|
vector_store_connector=vector_store_connector,
|
|
)
|
|
chunk_docs = assembler.get_chunks()
|
|
doc.status = SyncStatus.RUNNING.name
|
|
doc.chunk_size = len(chunk_docs)
|
|
doc.gmt_modified = datetime.now()
|
|
knowledge_document_dao.update_knowledge_document(doc)
|
|
executor = CFG.SYSTEM_APP.get_component(
|
|
ComponentType.EXECUTOR_DEFAULT, ExecutorFactory
|
|
).create()
|
|
executor.submit(self.async_doc_embedding, assembler, chunk_docs, doc)
|
|
logger.info(f"begin save document chunks, doc:{doc.doc_name}")
|
|
return chunk_docs
|
|
|
|
async def document_summary(self, request: DocumentSummaryRequest):
|
|
"""get document summary
|
|
Args:
|
|
- request: DocumentSummaryRequest
|
|
"""
|
|
doc_query = KnowledgeDocumentEntity(id=request.doc_id)
|
|
documents = knowledge_document_dao.get_documents(doc_query)
|
|
if len(documents) != 1:
|
|
raise Exception(f"can not found document for {request.doc_id}")
|
|
document = documents[0]
|
|
from dbgpt.model.cluster import WorkerManagerFactory
|
|
|
|
worker_manager = CFG.SYSTEM_APP.get_component(
|
|
ComponentType.WORKER_MANAGER_FACTORY, WorkerManagerFactory
|
|
).create()
|
|
chunk_parameters = ChunkParameters(
|
|
chunk_strategy="CHUNK_BY_SIZE",
|
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
|
chunk_overlap=CFG.KNOWLEDGE_CHUNK_OVERLAP,
|
|
)
|
|
chunk_entities = document_chunk_dao.get_document_chunks(
|
|
DocumentChunkEntity(document_id=document.id)
|
|
)
|
|
if (
|
|
document.status not in [SyncStatus.RUNNING.name]
|
|
and len(chunk_entities) == 0
|
|
):
|
|
self._sync_knowledge_document(
|
|
space_name=document.space,
|
|
doc=document,
|
|
chunk_parameters=chunk_parameters,
|
|
)
|
|
knowledge = KnowledgeFactory.create(
|
|
datasource=document.content,
|
|
knowledge_type=KnowledgeType.get_by_value(document.doc_type),
|
|
)
|
|
assembler = SummaryAssembler(
|
|
knowledge=knowledge,
|
|
model_name=request.model_name,
|
|
llm_client=DefaultLLMClient(
|
|
worker_manager=worker_manager, auto_convert_message=True
|
|
),
|
|
language=CFG.LANGUAGE,
|
|
chunk_parameters=chunk_parameters,
|
|
)
|
|
summary = await assembler.generate_summary()
|
|
|
|
if len(assembler.get_chunks()) == 0:
|
|
raise Exception(f"can not found chunks for {request.doc_id}")
|
|
|
|
return await self._llm_extract_summary(
|
|
summary, request.conv_uid, request.model_name
|
|
)
|
|
|
|
def update_knowledge_space(
|
|
self, space_id: int, space_request: KnowledgeSpaceRequest
|
|
):
|
|
"""update knowledge space
|
|
Args:
|
|
- space_id: space id
|
|
- space_request: KnowledgeSpaceRequest
|
|
"""
|
|
entity = KnowledgeSpaceEntity(
|
|
id=space_id,
|
|
name=space_request.name,
|
|
vector_type=space_request.vector_type,
|
|
desc=space_request.desc,
|
|
owner=space_request.owner,
|
|
)
|
|
|
|
knowledge_space_dao.update_knowledge_space(entity)
|
|
|
|
def delete_space(self, space_name: str):
|
|
"""delete knowledge space
|
|
Args:
|
|
- space_name: knowledge space name
|
|
"""
|
|
query = KnowledgeSpaceEntity(name=space_name)
|
|
spaces = knowledge_space_dao.get_knowledge_space(query)
|
|
if len(spaces) == 0:
|
|
raise Exception(f"delete error, no space name:{space_name} in database")
|
|
space = spaces[0]
|
|
embedding_factory = CFG.SYSTEM_APP.get_component(
|
|
"embedding_factory", EmbeddingFactory
|
|
)
|
|
embedding_fn = embedding_factory.create(
|
|
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
|
|
)
|
|
config = VectorStoreConfig(name=space.name, embedding_fn=embedding_fn)
|
|
vector_store_connector = VectorStoreConnector(
|
|
vector_store_type=CFG.VECTOR_STORE_TYPE,
|
|
vector_store_config=config,
|
|
)
|
|
# delete vectors
|
|
vector_store_connector.delete_vector_name(space.name)
|
|
document_query = KnowledgeDocumentEntity(space=space.name)
|
|
# delete chunks
|
|
documents = knowledge_document_dao.get_documents(document_query)
|
|
for document in documents:
|
|
document_chunk_dao.raw_delete(document.id)
|
|
# delete documents
|
|
knowledge_document_dao.raw_delete(document_query)
|
|
# delete space
|
|
return knowledge_space_dao.delete_knowledge_space(space)
|
|
|
|
def delete_document(self, space_name: str, doc_name: str):
|
|
"""delete document
|
|
Args:
|
|
- space_name: knowledge space name
|
|
- doc_name: doocument name
|
|
"""
|
|
document_query = KnowledgeDocumentEntity(doc_name=doc_name, space=space_name)
|
|
documents = knowledge_document_dao.get_documents(document_query)
|
|
if len(documents) != 1:
|
|
raise Exception(f"there are no or more than one document called {doc_name}")
|
|
vector_ids = documents[0].vector_ids
|
|
if vector_ids is not None:
|
|
config = VectorStoreConfig(name=space_name)
|
|
vector_store_connector = VectorStoreConnector(
|
|
vector_store_type=CFG.VECTOR_STORE_TYPE,
|
|
vector_store_config=config,
|
|
)
|
|
# delete vector by ids
|
|
vector_store_connector.delete_by_ids(vector_ids)
|
|
# delete chunks
|
|
document_chunk_dao.raw_delete(documents[0].id)
|
|
# delete document
|
|
return knowledge_document_dao.raw_delete(document_query)
|
|
|
|
def get_document_chunks(self, request: ChunkQueryRequest):
|
|
"""get document chunks
|
|
Args:
|
|
- request: ChunkQueryRequest
|
|
"""
|
|
query = DocumentChunkEntity(
|
|
id=request.id,
|
|
document_id=request.document_id,
|
|
doc_name=request.doc_name,
|
|
doc_type=request.doc_type,
|
|
)
|
|
document_query = KnowledgeDocumentEntity(id=request.document_id)
|
|
documents = knowledge_document_dao.get_documents(document_query)
|
|
|
|
res = ChunkQueryResponse()
|
|
res.data = document_chunk_dao.get_document_chunks(
|
|
query, page=request.page, page_size=request.page_size
|
|
)
|
|
res.summary = documents[0].summary
|
|
res.total = document_chunk_dao.get_document_chunks_count(query)
|
|
res.page = request.page
|
|
return res
|
|
|
|
@trace("async_doc_embedding")
|
|
def async_doc_embedding(self, assembler, chunk_docs, doc):
|
|
"""async document embedding into vector db
|
|
Args:
|
|
- client: EmbeddingEngine Client
|
|
- chunk_docs: List[Document]
|
|
- doc: KnowledgeDocumentEntity
|
|
"""
|
|
|
|
logger.info(
|
|
f"async doc embedding sync, doc:{doc.doc_name}, chunks length is {len(chunk_docs)}, begin embedding to vector store-{CFG.VECTOR_STORE_TYPE}"
|
|
)
|
|
try:
|
|
with root_tracer.start_span(
|
|
"app.knowledge.assembler.persist",
|
|
metadata={"doc": doc.doc_name, "chunks": len(chunk_docs)},
|
|
):
|
|
vector_ids = assembler.persist()
|
|
doc.status = SyncStatus.FINISHED.name
|
|
doc.result = "document embedding success"
|
|
if vector_ids is not None:
|
|
doc.vector_ids = ",".join(vector_ids)
|
|
logger.info(f"async document embedding, success:{doc.doc_name}")
|
|
# save chunk details
|
|
chunk_entities = [
|
|
DocumentChunkEntity(
|
|
doc_name=doc.doc_name,
|
|
doc_type=doc.doc_type,
|
|
document_id=doc.id,
|
|
content=chunk_doc.content,
|
|
meta_info=str(chunk_doc.metadata),
|
|
gmt_created=datetime.now(),
|
|
gmt_modified=datetime.now(),
|
|
)
|
|
for chunk_doc in chunk_docs
|
|
]
|
|
document_chunk_dao.create_documents_chunks(chunk_entities)
|
|
except Exception as e:
|
|
doc.status = SyncStatus.FAILED.name
|
|
doc.result = "document embedding failed" + str(e)
|
|
logger.error(f"document embedding, failed:{doc.doc_name}, {str(e)}")
|
|
return knowledge_document_dao.update_knowledge_document(doc)
|
|
|
|
def _build_default_context(self):
|
|
from dbgpt.app.scene.chat_knowledge.v1.prompt import (
|
|
_DEFAULT_TEMPLATE,
|
|
PROMPT_SCENE_DEFINE,
|
|
)
|
|
|
|
context_template = {
|
|
"embedding": {
|
|
"topk": CFG.KNOWLEDGE_SEARCH_TOP_SIZE,
|
|
"recall_score": CFG.KNOWLEDGE_SEARCH_RECALL_SCORE,
|
|
"recall_type": "TopK",
|
|
"model": EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL].rsplit("/", 1)[-1],
|
|
"chunk_size": CFG.KNOWLEDGE_CHUNK_SIZE,
|
|
"chunk_overlap": CFG.KNOWLEDGE_CHUNK_OVERLAP,
|
|
},
|
|
"prompt": {
|
|
"max_token": 2000,
|
|
"scene": PROMPT_SCENE_DEFINE,
|
|
"template": _DEFAULT_TEMPLATE,
|
|
},
|
|
"summary": {
|
|
"max_iteration": DEFAULT_SUMMARY_MAX_ITERATION,
|
|
"concurrency_limit": DEFAULT_SUMMARY_CONCURRENCY_LIMIT,
|
|
},
|
|
}
|
|
context_template_string = json.dumps(context_template, indent=4)
|
|
return context_template_string
|
|
|
|
def get_space_context(self, space_name):
|
|
"""get space contect
|
|
Args:
|
|
- space_name: space name
|
|
"""
|
|
request = KnowledgeSpaceRequest()
|
|
request.name = space_name
|
|
spaces = self.get_knowledge_space(request)
|
|
if len(spaces) != 1:
|
|
raise Exception(
|
|
f"have not found {space_name} space or found more than one space called {space_name}"
|
|
)
|
|
space = spaces[0]
|
|
if space.context is not None:
|
|
return json.loads(spaces[0].context)
|
|
return None
|
|
|
|
async def _llm_extract_summary(
|
|
self, doc: str, conn_uid: str, model_name: str = None
|
|
):
|
|
"""Extract triplets from text by llm
|
|
Args:
|
|
doc: Document
|
|
conn_uid: str,chat conversation id
|
|
model_name: str, model name
|
|
Returns:
|
|
chat: BaseChat, refine summary chat.
|
|
"""
|
|
from dbgpt.app.scene import ChatScene
|
|
|
|
chat_param = {
|
|
"chat_session_id": conn_uid,
|
|
"current_user_input": "",
|
|
"select_param": doc,
|
|
"model_name": model_name,
|
|
"model_cache_enable": False,
|
|
}
|
|
executor = CFG.SYSTEM_APP.get_component(
|
|
ComponentType.EXECUTOR_DEFAULT, ExecutorFactory
|
|
).create()
|
|
from dbgpt.app.openapi.api_v1.api_v1 import CHAT_FACTORY
|
|
|
|
chat = await blocking_func_to_async(
|
|
executor,
|
|
CHAT_FACTORY.get_implementation,
|
|
ChatScene.ExtractRefineSummary.value(),
|
|
**{"chat_param": chat_param},
|
|
)
|
|
return chat
|