Files
DB-GPT/pilot/scene/chat_knowledge/custom/chat.py
2023-07-04 11:01:25 +08:00

60 lines
1.8 KiB
Python

from pilot.scene.base_chat import BaseChat, logger, headers
from pilot.scene.base import ChatScene
from pilot.common.sql_database import Database
from pilot.configs.config import Config
from pilot.common.markdown_text import (
generate_markdown_table,
generate_htm_table,
datas_to_table_html,
)
from pilot.configs.model_config import (
DATASETS_DIR,
KNOWLEDGE_UPLOAD_ROOT_PATH,
LLM_MODEL_CONFIG,
LOGDIR,
)
from pilot.scene.chat_knowledge.custom.prompt import prompt
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
CFG = Config()
class ChatNewKnowledge(BaseChat):
chat_scene: str = ChatScene.ChatNewKnowledge.value()
"""Number of results to return from the query"""
def __init__(self, chat_session_id, user_input, knowledge_name):
""" """
super().__init__(
chat_mode=ChatScene.ChatNewKnowledge,
chat_session_id=chat_session_id,
current_user_input=user_input,
)
self.knowledge_name = knowledge_name
vector_store_config = {
"vector_store_name": knowledge_name,
"text_field": "content",
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
self.knowledge_embedding_client = KnowledgeEmbedding(
model_name=LLM_MODEL_CONFIG["text2vec"],
vector_store_config=vector_store_config,
)
def generate_input_values(self):
docs = self.knowledge_embedding_client.similar_search(
self.current_user_input, CFG.KNOWLEDGE_SEARCH_TOP_SIZE
)
context = [d.page_content for d in docs]
context = context[:2000]
input_values = {"context": context, "question": self.current_user_input}
return input_values
@property
def chat_type(self) -> str:
return ChatScene.ChatNewKnowledge.value