Files
DB-GPT/pilot/server/vectordb_qa.py
2023-06-05 18:08:55 +08:00

72 lines
2.5 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from langchain.prompts import PromptTemplate
from pilot.configs.config import Config
from pilot.conversation import conv_qa_prompt_template, conv_db_summary_templates
from pilot.logs import logger
from pilot.model.llm_out.vicuna_llm import VicunaLLM
from pilot.vector_store.file_loader import KnownLedge2Vector
CFG = Config()
class KnownLedgeBaseQA:
def __init__(self) -> None:
k2v = KnownLedge2Vector()
self.vector_store = k2v.init_vector_store()
self.llm = VicunaLLM()
def get_similar_answer(self, query):
prompt = PromptTemplate(
template=conv_qa_prompt_template, input_variables=["context", "question"]
)
retriever = self.vector_store.as_retriever(
search_kwargs={"k": CFG.KNOWLEDGE_SEARCH_TOP_SIZE}
)
docs = retriever.get_relevant_documents(query=query)
context = [d.page_content for d in docs]
result = prompt.format(context="\n".join(context), question=query)
return result
@staticmethod
def build_knowledge_prompt(query, docs, state):
prompt_template = PromptTemplate(
template=conv_qa_prompt_template, input_variables=["context", "question"]
)
context = [d.page_content for d in docs]
result = prompt_template.format(context="\n".join(context), question=query)
state.messages[-2][1] = result
prompt = state.get_prompt()
if len(prompt) > 4000:
logger.info("prompt length greater than 4000, rebuild")
context = context[:2000]
prompt_template = PromptTemplate(
template=conv_qa_prompt_template,
input_variables=["context", "question"],
)
result = prompt_template.format(context="\n".join(context), question=query)
state.messages[-2][1] = result
prompt = state.get_prompt()
print("new prompt length:" + str(len(prompt)))
return prompt
@staticmethod
def build_db_summary_prompt(query, db_profile_summary, state):
prompt_template = PromptTemplate(
template=conv_db_summary_templates,
input_variables=["db_input", "db_profile_summary"],
)
# context = [d.page_content for d in docs]
result = prompt_template.format(
db_profile_summary=db_profile_summary, db_input=query
)
state.messages[-2][1] = result
prompt = state.get_prompt()
return prompt