Files
DB-GPT/tools/knowledge_init.py
aries_ckt eb31d5523e doc:update dbgpt_demo.mp4
1.update dbgpt_demo.mp4
2.format code
2023-07-06 13:47:46 +08:00

76 lines
2.6 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
from pilot.embedding_engine.knowledge_type import KnowledgeType
from pilot.server.knowledge.service import KnowledgeService
from pilot.server.knowledge.request.request import KnowledgeSpaceRequest
from pilot.configs.config import Config
from pilot.configs.model_config import (
DATASETS_DIR,
LLM_MODEL_CONFIG,
)
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
knowledge_space_service = KnowledgeService()
CFG = Config()
class LocalKnowledgeInit:
embeddings: object = None
def __init__(self, vector_store_config) -> None:
self.vector_store_config = vector_store_config
self.model_name = LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
def knowledge_persist(self, file_path):
"""knowledge persist"""
docs = []
embedding_engine = None
for root, _, files in os.walk(file_path, topdown=False):
for file in files:
filename = os.path.join(root, file)
ke = KnowledgeEmbedding(
knowledge_source=filename,
knowledge_type=KnowledgeType.DOCUMENT.value,
model_name=self.model_name,
vector_store_config=self.vector_store_config,
)
embedding_engine = ke.init_knowledge_embedding()
doc = ke.read()
docs.extend(doc)
embedding_engine.index_to_store(docs)
print(f"""begin create {self.vector_store_config["vector_store_name"]} space""")
try:
space = KnowledgeSpaceRequest
space.name = self.vector_store_config["vector_store_name"]
space.desc = "knowledge_init.py"
space.vector_type = CFG.VECTOR_STORE_TYPE
space.owner = "DB-GPT"
knowledge_space_service.create_knowledge_space(space)
except Exception as e:
if "have already named" in str(e):
print(f"Warning: you have already named {space.name}")
else:
raise e
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--vector_name", type=str, default="default")
args = parser.parse_args()
vector_name = args.vector_name
store_type = CFG.VECTOR_STORE_TYPE
vector_store_config = {"vector_store_name": vector_name}
print(vector_store_config)
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
kv.knowledge_persist(file_path=DATASETS_DIR)
print("your knowledge embedding success...")