Files
DB-GPT/examples/app.py
2023-06-18 19:39:10 +03:00

75 lines
2.0 KiB
Python

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import gradio as gr
from langchain.agents import AgentType, initialize_agent, load_tools
from llama_index import (
Document,
GPTVectorStoreIndex,
LangchainEmbedding,
LLMPredictor,
ServiceContext,
)
from pilot.model.llm_out.vicuna_llm import VicunaEmbeddingLLM, VicunaRequestLLM
def agent_demo():
llm = VicunaRequestLLM()
tools = load_tools(["python_repl"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run("Write a SQL script that Query 'select count(1)!'")
def knowledged_qa_demo(text_list):
llm_predictor = LLMPredictor(llm=VicunaRequestLLM())
hfemb = VicunaEmbeddingLLM()
embed_model = LangchainEmbedding(hfemb)
documents = [Document(t) for t in text_list]
service_context = ServiceContext.from_defaults(
llm_predictor=llm_predictor, embed_model=embed_model
)
index = GPTVectorStoreIndex.from_documents(
documents, service_context=service_context
)
return index
def get_answer(q):
base_knowledge = """ """
text_list = [base_knowledge]
index = knowledged_qa_demo(text_list)
response = index.query(q)
return response.response
def get_similar(q):
from pilot.vector_store.extract_tovec import knownledge_tovec_st
docsearch = knownledge_tovec_st("./datasets/plan.md")
docs = docsearch.similarity_search_with_score(q, k=1)
for doc in docs:
dc, s = doc
print(s)
yield dc.page_content
if __name__ == "__main__":
# agent_demo()
with gr.Blocks() as demo:
gr.Markdown("数据库智能助手")
with gr.Tab("知识问答"):
text_input = gr.TextArea()
text_output = gr.TextArea()
text_button = gr.Button()
text_button.click(get_similar, inputs=text_input, outputs=text_output)
demo.queue(concurrency_count=3).launch(server_name="0.0.0.0")