Files
DB-GPT/examples/embdserver.py
2023-05-24 18:43:04 +08:00

83 lines
2.3 KiB
Python

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import json
import os
import sys
from urllib.parse import urljoin
import gradio as gr
import requests
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(ROOT_PATH)
from langchain.prompts import PromptTemplate
from pilot.configs.config import Config
from pilot.conversation import conv_qa_prompt_template, conv_templates
llmstream_stream_path = "generate_stream"
CFG = Config()
def generate(query):
template_name = "conv_one_shot"
state = conv_templates[template_name].copy()
# pt = PromptTemplate(
# template=conv_qa_prompt_template,
# input_variables=["context", "question"]
# )
# result = pt.format(context="This page covers how to use the Chroma ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.",
# question=query)
# print(result)
state.append_message(state.roles[0], query)
state.append_message(state.roles[1], None)
prompt = state.get_prompt()
params = {
"model": "chatglm-6b",
"prompt": prompt,
"temperature": 1.0,
"max_new_tokens": 1024,
"stop": "###",
}
response = requests.post(
url=urljoin(CFG.MODEL_SERVER, llmstream_stream_path), data=json.dumps(params)
)
skip_echo_len = len(params["prompt"]) + 1 - params["prompt"].count("</s>") * 3
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
if "vicuna" in CFG.LLM_MODEL:
output = data["text"][skip_echo_len:].strip()
else:
output = data["text"].strip()
state.messages[-1][-1] = output + ""
yield (output)
if __name__ == "__main__":
print(CFG.LLM_MODEL)
with gr.Blocks() as demo:
gr.Markdown("数据库SQL生成助手")
with gr.Tab("SQL生成"):
text_input = gr.TextArea()
text_output = gr.TextArea()
text_button = gr.Button("提交")
text_button.click(generate, inputs=text_input, outputs=text_output)
demo.queue(concurrency_count=3).launch(server_name="0.0.0.0")