HV: refine sw_linux struct

The guest OS of ACRN will not be limited to Linux, so refine the struct
of sw_linux to more generic sw_module_info. Currently bootargs and ramdisk
are only supported modules but we can include more modules in future;

Tracked-On: #3214

Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
This commit is contained in:
Victor Sun 2019-05-21 11:54:15 +08:00 committed by wenlingz
parent 475b05da54
commit 0f00a4b0da
3 changed files with 43 additions and 46 deletions

View File

@ -60,8 +60,8 @@ static void parse_other_modules(struct acrn_vm *vm, const struct multiboot_modul
type_len = end - start; type_len = end - start;
if (strncmp("FIRMWARE", start, type_len) == 0) { if (strncmp("FIRMWARE", start, type_len) == 0) {
char dyn_bootargs[100] = {'\0'}; char dyn_bootargs[100] = {'\0'};
void *load_addr = gpa2hva(vm, (uint64_t)vm->sw.linux_info.bootargs_load_addr); void *load_addr = gpa2hva(vm, (uint64_t)vm->sw.bootargs_info.load_addr);
uint32_t args_size = vm->sw.linux_info.bootargs_size; uint32_t args_size = vm->sw.bootargs_info.size;
static int32_t copy_once = 1; static int32_t copy_once = 1;
start = end + 1; /*it is fw name for boot args */ start = end + 1; /*it is fw name for boot args */
@ -72,21 +72,21 @@ static void parse_other_modules(struct acrn_vm *vm, const struct multiboot_modul
if (copy_once != 0) { if (copy_once != 0) {
copy_once = 0; copy_once = 0;
(void)strncpy_s(load_addr, MAX_BOOTARGS_SIZE + 1U, (void)strncpy_s(load_addr, MAX_BOOTARGS_SIZE + 1U,
(const char *)vm->sw.linux_info.bootargs_src_addr, (const char *)vm->sw.bootargs_info.src_addr,
vm->sw.linux_info.bootargs_size); vm->sw.bootargs_info.size);
vm->sw.linux_info.bootargs_src_addr = load_addr; vm->sw.bootargs_info.src_addr = load_addr;
} }
(void)strncpy_s(load_addr + args_size, 100U, dyn_bootargs, 100U); (void)strncpy_s(load_addr + args_size, 100U, dyn_bootargs, 100U);
vm->sw.linux_info.bootargs_size = strnlen_s(load_addr, MAX_BOOTARGS_SIZE); vm->sw.bootargs_info.size = strnlen_s(load_addr, MAX_BOOTARGS_SIZE);
} else if (strncmp("RAMDISK", start, type_len) == 0) { } else if (strncmp("RAMDISK", start, type_len) == 0) {
vm->sw.linux_info.ramdisk_src_addr = mod_addr; vm->sw.ramdisk_info.src_addr = mod_addr;
vm->sw.linux_info.ramdisk_load_addr = vm->sw.kernel_info.kernel_load_addr + vm->sw.ramdisk_info.load_addr = vm->sw.kernel_info.kernel_load_addr +
vm->sw.kernel_info.kernel_size; vm->sw.kernel_info.kernel_size;
vm->sw.linux_info.ramdisk_load_addr = vm->sw.ramdisk_info.load_addr =
(void *)round_page_up((uint64_t)vm->sw.linux_info.ramdisk_load_addr); (void *)round_page_up((uint64_t)vm->sw.ramdisk_info.load_addr);
vm->sw.linux_info.ramdisk_size = mod_size; vm->sw.ramdisk_info.size = mod_size;
} else { } else {
pr_warn("not support mod, cmd: %s", start); pr_warn("not support mod, cmd: %s", start);
} }
@ -192,8 +192,8 @@ static int32_t init_general_vm_boot_info(struct acrn_vm *vm)
if (vm_config->load_order == PRE_LAUNCHED_VM) { if (vm_config->load_order == PRE_LAUNCHED_VM) {
vm->sw.kernel_info.kernel_load_addr = (void *)(MEM_1M * 16U); vm->sw.kernel_info.kernel_load_addr = (void *)(MEM_1M * 16U);
vm->sw.linux_info.bootargs_src_addr = (void *)vm_config->os_config.bootargs; vm->sw.bootargs_info.src_addr = (void *)vm_config->os_config.bootargs;
vm->sw.linux_info.bootargs_size = vm->sw.bootargs_info.size =
strnlen_s(vm_config->os_config.bootargs, MAX_BOOTARGS_SIZE); strnlen_s(vm_config->os_config.bootargs, MAX_BOOTARGS_SIZE);
} else { } else {
vm->sw.kernel_info.kernel_load_addr = vm->sw.kernel_info.kernel_load_addr =
@ -207,20 +207,20 @@ static int32_t init_general_vm_boot_info(struct acrn_vm *vm)
merge_cmdline(vm, hpa2hva((uint64_t)mbi->mi_cmdline), merge_cmdline(vm, hpa2hva((uint64_t)mbi->mi_cmdline),
hpa2hva((uint64_t)mods[0].mm_string)); hpa2hva((uint64_t)mods[0].mm_string));
vm->sw.linux_info.bootargs_src_addr = kernel_cmdline; vm->sw.bootargs_info.src_addr = kernel_cmdline;
vm->sw.linux_info.bootargs_size = vm->sw.bootargs_info.size =
strnlen_s(kernel_cmdline, MAX_BOOTARGS_SIZE); strnlen_s(kernel_cmdline, MAX_BOOTARGS_SIZE);
} else { } else {
vm->sw.linux_info.bootargs_src_addr = vm->sw.bootargs_info.src_addr =
hpa2hva((uint64_t)mods[0].mm_string); hpa2hva((uint64_t)mods[0].mm_string);
vm->sw.linux_info.bootargs_size = vm->sw.bootargs_info.size =
strnlen_s(hpa2hva((uint64_t)mods[0].mm_string), strnlen_s(hpa2hva((uint64_t)mods[0].mm_string),
MAX_BOOTARGS_SIZE); MAX_BOOTARGS_SIZE);
} }
} }
/* Kernel bootarg and zero page are right before the kernel image */ /* Kernel bootarg and zero page are right before the kernel image */
vm->sw.linux_info.bootargs_load_addr = vm->sw.bootargs_info.load_addr =
vm->sw.kernel_info.kernel_load_addr - (MEM_1K * 8U); vm->sw.kernel_info.kernel_load_addr - (MEM_1K * 8U);
if (mbi->mi_mods_count > 1U) { if (mbi->mi_mods_count > 1U) {

View File

@ -53,13 +53,14 @@ static uint32_t create_zeropage_e820(struct zero_page *zp, const struct acrn_vm
static uint64_t create_zero_page(struct acrn_vm *vm) static uint64_t create_zero_page(struct acrn_vm *vm)
{ {
struct zero_page *zeropage; struct zero_page *zeropage;
struct sw_linux *linux_info = &(vm->sw.linux_info);
struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info); struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info);
struct sw_module_info *bootargs_info = &(vm->sw.bootargs_info);
struct sw_module_info *ramdisk_info = &(vm->sw.ramdisk_info);
struct zero_page *hva; struct zero_page *hva;
uint64_t gpa, addr; uint64_t gpa, addr;
/* Set zeropage in Linux Guest RAM region just past boot args */ /* Set zeropage in Linux Guest RAM region just past boot args */
gpa = (uint64_t)linux_info->bootargs_load_addr + MEM_4K; gpa = (uint64_t)bootargs_info->load_addr + MEM_4K;
hva = (struct zero_page *)gpa2hva(vm, gpa); hva = (struct zero_page *)gpa2hva(vm, gpa);
zeropage = hva; zeropage = hva;
@ -73,16 +74,16 @@ static uint64_t create_zero_page(struct acrn_vm *vm)
&(hva->hdr), sizeof(hva->hdr)); &(hva->hdr), sizeof(hva->hdr));
/* See if kernel has a RAM disk */ /* See if kernel has a RAM disk */
if (linux_info->ramdisk_src_addr != NULL) { if (ramdisk_info->src_addr != NULL) {
/* Copy ramdisk load_addr and size in zeropage header structure /* Copy ramdisk load_addr and size in zeropage header structure
*/ */
addr = (uint64_t)linux_info->ramdisk_load_addr; addr = (uint64_t)ramdisk_info->load_addr;
zeropage->hdr.ramdisk_addr = (uint32_t)addr; zeropage->hdr.ramdisk_addr = (uint32_t)addr;
zeropage->hdr.ramdisk_size = (uint32_t)linux_info->ramdisk_size; zeropage->hdr.ramdisk_size = (uint32_t)ramdisk_info->size;
} }
/* Copy bootargs load_addr in zeropage header structure */ /* Copy bootargs load_addr in zeropage header structure */
addr = (uint64_t)linux_info->bootargs_load_addr; addr = (uint64_t)bootargs_info->load_addr;
zeropage->hdr.bootargs_addr = (uint32_t)addr; zeropage->hdr.bootargs_addr = (uint32_t)addr;
/* set constant arguments in zero page */ /* set constant arguments in zero page */
@ -103,8 +104,9 @@ int32_t direct_boot_sw_loader(struct acrn_vm *vm)
char dyn_bootargs[100] = {0}; char dyn_bootargs[100] = {0};
uint32_t kernel_entry_offset; uint32_t kernel_entry_offset;
struct zero_page *zeropage; struct zero_page *zeropage;
struct sw_linux *linux_info = &(vm->sw.linux_info);
struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info); struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info);
struct sw_module_info *bootargs_info = &(vm->sw.bootargs_info);
struct sw_module_info *ramdisk_info = &(vm->sw.ramdisk_info);
/* get primary vcpu */ /* get primary vcpu */
struct acrn_vcpu *vcpu = vcpu_from_vid(vm, BOOT_CPU_ID); struct acrn_vcpu *vcpu = vcpu_from_vid(vm, BOOT_CPU_ID);
const struct acrn_vm_config *vm_config = get_vm_config(vm->vm_id); const struct acrn_vm_config *vm_config = get_vm_config(vm->vm_id);
@ -147,9 +149,9 @@ int32_t direct_boot_sw_loader(struct acrn_vm *vm)
} }
/* Copy Guest OS bootargs to its load location */ /* Copy Guest OS bootargs to its load location */
(void)copy_to_gpa(vm, linux_info->bootargs_src_addr, (void)copy_to_gpa(vm, bootargs_info->src_addr,
(uint64_t)linux_info->bootargs_load_addr, (uint64_t)bootargs_info->load_addr,
(strnlen_s((char *)linux_info->bootargs_src_addr, MAX_BOOTARGS_SIZE) + 1U)); (strnlen_s((char *)bootargs_info->src_addr, MAX_BOOTARGS_SIZE) + 1U));
/* add "hugepagesz=1G hugepages=x" to cmdline for 1G hugepage /* add "hugepagesz=1G hugepages=x" to cmdline for 1G hugepage
* reserving. Current strategy is "total_mem_size in Giga - * reserving. Current strategy is "total_mem_size in Giga -
@ -161,18 +163,18 @@ int32_t direct_boot_sw_loader(struct acrn_vm *vm)
reserving_1g_pages = (vm_config->memory.size >> 30U) - NUM_REMAIN_1G_PAGES; reserving_1g_pages = (vm_config->memory.size >> 30U) - NUM_REMAIN_1G_PAGES;
if (reserving_1g_pages > 0) { if (reserving_1g_pages > 0) {
snprintf(dyn_bootargs, 100U, " hugepagesz=1G hugepages=%lld", reserving_1g_pages); snprintf(dyn_bootargs, 100U, " hugepagesz=1G hugepages=%lld", reserving_1g_pages);
(void)copy_to_gpa(vm, dyn_bootargs, ((uint64_t)linux_info->bootargs_load_addr (void)copy_to_gpa(vm, dyn_bootargs, ((uint64_t)bootargs_info->load_addr
+ linux_info->bootargs_size), + bootargs_info->size),
(strnlen_s(dyn_bootargs, 99U) + 1U)); (strnlen_s(dyn_bootargs, 99U) + 1U));
} }
} }
/* Check if a RAM disk is present with Linux guest */ /* Check if a RAM disk is present with Linux guest */
if (linux_info->ramdisk_src_addr != NULL) { if (ramdisk_info->src_addr != NULL) {
/* Copy RAM disk to its load location */ /* Copy RAM disk to its load location */
(void)copy_to_gpa(vm, linux_info->ramdisk_src_addr, (void)copy_to_gpa(vm, ramdisk_info->src_addr,
(uint64_t)linux_info->ramdisk_load_addr, (uint64_t)ramdisk_info->load_addr,
linux_info->ramdisk_size); ramdisk_info->size);
} }
/* Create Zeropage and copy Physical Base Address of Zeropage /* Create Zeropage and copy Physical Base Address of Zeropage

View File

@ -35,16 +35,11 @@ struct vm_hw_info {
uint16_t created_vcpus; /* Number of created vcpus */ uint16_t created_vcpus; /* Number of created vcpus */
} __aligned(PAGE_SIZE); } __aligned(PAGE_SIZE);
struct sw_linux { struct sw_module_info {
void *ramdisk_src_addr; /* HVA */ /* sw modules like ramdisk, bootargs, firmware, etc. */
void *ramdisk_load_addr; /* GPA */ void *src_addr; /* HVA */
uint32_t ramdisk_size; void *load_addr; /* GPA */
void *bootargs_src_addr; /* HVA */ uint32_t size;
void *bootargs_load_addr; /* GPA */
uint32_t bootargs_size;
void *dtb_src_addr; /* HVA */
void *dtb_load_addr; /* GPA */
uint32_t dtb_size;
}; };
struct sw_kernel_info { struct sw_kernel_info {
@ -58,8 +53,8 @@ struct vm_sw_info {
int32_t kernel_type; /* Guest kernel type */ int32_t kernel_type; /* Guest kernel type */
/* Kernel information (common for all guest types) */ /* Kernel information (common for all guest types) */
struct sw_kernel_info kernel_info; struct sw_kernel_info kernel_info;
/* Additional information specific to Linux guests */ struct sw_module_info bootargs_info;
struct sw_linux linux_info; struct sw_module_info ramdisk_info;
/* HVA to IO shared page */ /* HVA to IO shared page */
void *io_shared_page; void *io_shared_page;
/* If enable IO completion polling mode */ /* If enable IO completion polling mode */