hv: pci: use ECAM to access PCIe Configuration Space

Use Enhanced Configuration Access Mechanism (MMIO) instead of PCI-compatible
Configuration Mechanism (IO port) to access  PCIe Configuration Space
PCI-compatible Configuration Mechanism (IO port) access is used for UART in
debug version.

Tracked-On: #3475
Signed-off-by: Li Fei1 <fei1.li@intel.com>
This commit is contained in:
Li Fei1
2019-12-05 19:35:23 +08:00
committed by wenlingz
parent 57a362061f
commit 1e50ec8899
6 changed files with 152 additions and 53 deletions

View File

@@ -34,6 +34,7 @@
#include <types.h>
#include <spinlock.h>
#include <io.h>
#include <pgtable.h>
#include <pci.h>
#include <uart16550.h>
#include <logmsg.h>
@@ -62,94 +63,92 @@ uint64_t get_mmcfg_base(void)
return pci_mmcfg_base;
}
/* @brief: Find the DRHD index corresponding to a PCI device
* Runs through the pci_pdev_array and returns the value in drhd_idx
* member from pdev structure that matches matches B:D.F
*
* @pbdf[in] B:D.F of a PCI device
*
* @return if there is a matching pbdf in pci_pdev_array, pdev->drhd_idx, else INVALID_DRHD_INDEX
/*
* @pre offset < 0x1000U
*/
uint32_t pci_lookup_drhd_for_pbdf(uint16_t pbdf)
static inline uint32_t pci_mmcfg_calc_address(union pci_bdf bdf, uint32_t offset)
{
uint32_t drhd_index = INVALID_DRHD_INDEX;
uint32_t index;
for (index = 0U; index < num_pci_pdev; index++) {
if (pci_pdev_array[index].bdf.value == pbdf) {
drhd_index = pci_pdev_array[index].drhd_index;
break;
}
}
return drhd_index;
return (uint32_t)pci_mmcfg_base + (((uint32_t)bdf.value << 12U) | offset);
}
static uint32_t pci_pdev_calc_address(union pci_bdf bdf, uint32_t offset)
static uint32_t pci_mmcfg_read_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes)
{
uint32_t addr = (uint32_t)bdf.value;
addr <<= 8U;
addr |= (offset | PCI_CFG_ENABLE);
return addr;
}
uint32_t pci_pdev_read_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes)
{
uint32_t addr;
uint32_t addr = pci_mmcfg_calc_address(bdf, offset);
void *hva = hpa2hva(addr);
uint32_t val;
addr = pci_pdev_calc_address(bdf, offset);
spinlock_obtain(&pci_device_lock);
/* Write address to ADDRESS register */
pio_write32(addr, (uint16_t)PCI_CONFIG_ADDR);
/* Read result from DATA register */
stac();
switch (bytes) {
case 1U:
val = (uint32_t)pio_read8((uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 3U));
val = (uint32_t)mmio_read8(hva);
break;
case 2U:
val = (uint32_t)pio_read16((uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 2U));
val = (uint32_t)mmio_read16(hva);
break;
default:
val = pio_read32((uint16_t)PCI_CONFIG_DATA);
val = mmio_read32(hva);
break;
}
clac();
spinlock_release(&pci_device_lock);
return val;
}
void pci_pdev_write_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes, uint32_t val)
/*
* @pre bytes == 1U || bytes == 2U || bytes == 4U
*/
static void pci_mmcfg_write_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes, uint32_t val)
{
uint32_t addr;
uint32_t addr = pci_mmcfg_calc_address(bdf, offset);
void *hva = hpa2hva(addr);
spinlock_obtain(&pci_device_lock);
addr = pci_pdev_calc_address(bdf, offset);
/* Write address to ADDRESS register */
pio_write32(addr, (uint16_t)PCI_CONFIG_ADDR);
/* Write value to DATA register */
stac();
switch (bytes) {
case 1U:
pio_write8((uint8_t)val, (uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 3U));
mmio_write8((uint8_t)val, hva);
break;
case 2U:
pio_write16((uint16_t)val, (uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 2U));
mmio_write16((uint16_t)val, hva);
break;
default:
pio_write32(val, (uint16_t)PCI_CONFIG_DATA);
mmio_write32(val, hva);
break;
}
clac();
spinlock_release(&pci_device_lock);
}
static struct pci_cfg_ops pci_mmcfg_cfg_ops = {
.pci_read_cfg = pci_mmcfg_read_cfg,
.pci_write_cfg = pci_mmcfg_write_cfg,
};
static struct pci_cfg_ops *acrn_pci_cfg_ops = &pci_direct_cfg_ops;
void pci_switch_to_mmio_cfg_ops(void)
{
acrn_pci_cfg_ops = &pci_mmcfg_cfg_ops;
}
/*
* @pre bytes == 1U || bytes == 2U || bytes == 4U
*/
uint32_t pci_pdev_read_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes)
{
return acrn_pci_cfg_ops->pci_read_cfg(bdf, offset, bytes);
}
/*
* @pre bytes == 1U || bytes == 2U || bytes == 4U
*/
void pci_pdev_write_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes, uint32_t val)
{
acrn_pci_cfg_ops->pci_write_cfg(bdf, offset, bytes, val);
}
bool pdev_need_bar_restore(const struct pci_pdev *pdev)
{
bool need_restore = false;
@@ -184,6 +183,30 @@ void pdev_restore_bar(const struct pci_pdev *pdev)
}
}
/* @brief: Find the DRHD index corresponding to a PCI device
* Runs through the pci_pdev_array and returns the value in drhd_idx
* member from pdev structure that matches matches B:D.F
*
* @pbdf[in] B:D.F of a PCI device
*
* @return if there is a matching pbdf in pci_pdev_array, pdev->drhd_idx, else INVALID_DRHD_INDEX
*/
uint32_t pci_lookup_drhd_for_pbdf(uint16_t pbdf)
{
uint32_t drhd_index = INVALID_DRHD_INDEX;
uint32_t index;
for (index = 0U; index < num_pci_pdev; index++) {
if (pci_pdev_array[index].bdf.value == pbdf) {
drhd_index = pci_pdev_array[index].drhd_index;
break;
}
}
return drhd_index;
}
/* enable: 1: enable INTx; 0: Disable INTx */
void enable_disable_pci_intx(union pci_bdf bdf, bool enable)
{