misc: efi-stub: Prepare multiboot2 info for HV

This patch adds code to prepare multiboot2 info passed to hypervisor.
Currently we prepare only the following information to hypervisor:
    Boot command line
    Boot loader name
    Modules
    Memory Map
    ACPI table
    EFI64 system table
    EFI memory map

Tracked-On: #6241
Signed-off-by: Yifan Liu <yifan1.liu@intel.com>
Signed-off-by: Toshiki Nishioka <toshiki.nishioka@intel.com>
This commit is contained in:
Yifan Liu 2021-06-22 16:40:05 +08:00 committed by wenlingz
parent 52790b5c0e
commit f3d1823754

View File

@ -142,16 +142,326 @@ static inline void hv_jump(EFI_PHYSICAL_ADDRESS hv_entry, uint32_t mbi, int32_t
);
}
static EFI_STATUS
fill_e820(HV_LOADER hvld, struct efi_memmap_info *mmap_info,
struct multiboot_mmap *mmap, int32_t *e820_count)
{
EFI_STATUS err = EFI_SUCCESS;
uint32_t mmap_entry_count = mmap_info->map_size / mmap_info->desc_size;
int32_t i, j;
/*
* Convert the EFI memory map to E820.
*/
for (i = 0, j = 0; i < mmap_entry_count && j < MBOOT_MMAP_NUMS - 1; i++) {
EFI_MEMORY_DESCRIPTOR *d;
uint32_t e820_type = 0;
d = (EFI_MEMORY_DESCRIPTOR *)((uint64_t)mmap_info->mmap + \
(i * mmap_info->desc_size));
switch(d->Type) {
case EfiReservedMemoryType:
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiMemoryMappedIO:
case EfiMemoryMappedIOPortSpace:
case EfiPalCode:
e820_type = E820_RESERVED;
break;
case EfiUnusableMemory:
e820_type = E820_UNUSABLE;
break;
case EfiACPIReclaimMemory:
e820_type = E820_ACPI;
break;
case EfiLoaderCode:
case EfiLoaderData:
case EfiBootServicesCode:
case EfiBootServicesData:
case EfiConventionalMemory:
e820_type = E820_RAM;
break;
case EfiACPIMemoryNVS:
e820_type = E820_NVS;
break;
default:
continue;
}
if ((j != 0) && mmap[j-1].mm_type == e820_type &&
(mmap[j-1].mm_base_addr + mmap[j-1].mm_length)
== d->PhysicalStart) {
mmap[j-1].mm_length += d->NumberOfPages << EFI_PAGE_SHIFT;
} else {
mmap[j].mm_base_addr = d->PhysicalStart;
mmap[j].mm_length = d->NumberOfPages << EFI_PAGE_SHIFT;
mmap[j].mm_type = e820_type;
j++;
}
}
/*
* if we haven't gone through all the mmap table entries,
* there must be a memory overwrite if we continue,
* so just abort anyway.
*/
if (i < mmap_entry_count) {
Print(L": bios provides %d mmap entries which is beyond limitation[%d]\n",
mmap_entry_count, MBOOT_MMAP_NUMS-1);
err = EFI_INVALID_PARAMETER;
goto out;
}
/* switch hv memory region(0x20000000 ~ 0x22000000) to
* available RAM in e820 table
*/
mmap[j].mm_base_addr = hvld->get_hv_hpa(hvld);
mmap[j].mm_length = hvld->get_hv_ram_size(hvld);
mmap[j].mm_type = E820_RAM;
j++;
mmap[j].mm_base_addr = hvld->get_mod_hpa(hvld);
mmap[j].mm_length = hvld->get_total_modsize(hvld);
mmap[j].mm_type = E820_RAM;
j++;
*e820_count = j;
out:
return err;
}
EFI_STATUS construct_mbi(HV_LOADER hvld, struct multiboot_info **mbinfo, struct efi_memmap_info *mmap_info)
{
EFI_STATUS err = EFI_SUCCESS;
return err;
}
static struct acpi_table_rsdp *
search_rsdp()
{
unsigned i;
struct acpi_table_rsdp *rsdp = NULL;
EFI_CONFIGURATION_TABLE *config_table = sys_table->ConfigurationTable;
for (i = 0; i < sys_table->NumberOfTableEntries; i++) {
EFI_GUID acpi_20_table_guid = ACPI_20_TABLE_GUID;
EFI_GUID acpi_table_guid = ACPI_TABLE_GUID;
if (CompareGuid(&acpi_20_table_guid,
&config_table->VendorGuid) == 0) {
rsdp = config_table->VendorTable;
break;
}
if (CompareGuid(&acpi_table_guid,
&config_table->VendorGuid) == 0)
rsdp = config_table->VendorTable;
config_table++;
}
return rsdp;
}
static uint32_t
get_mbi2_size(HV_LOADER hvld, struct efi_memmap_info *mmap_info, uint32_t rsdp_length)
{
uint32_t mmap_entry_count = mmap_info->map_size / mmap_info->desc_size;
return 2 * sizeof(uint32_t) \
/* Boot command line */
+ (sizeof(struct multiboot2_tag_string) + \
ALIGN_UP(hvld->get_boot_cmdsize(hvld), MULTIBOOT2_TAG_ALIGN)) \
/* Boot loader name */
+ (sizeof(struct multiboot2_tag_string) + \
ALIGN_UP(BOOT_LOADER_NAME_SIZE, MULTIBOOT2_TAG_ALIGN)) \
/* Modules */
+ (hvld->get_mod_count(hvld) * sizeof(struct multiboot2_tag_module) + \
hvld->get_total_modcmdsize(hvld)) \
/* Memory Map */
+ ALIGN_UP((sizeof(struct multiboot2_tag_mmap) + \
mmap_entry_count * sizeof(struct multiboot2_mmap_entry)), MULTIBOOT2_TAG_ALIGN) \
/* ACPI new */
+ ALIGN_UP(sizeof(struct multiboot2_tag_new_acpi) + \
rsdp_length, MULTIBOOT2_TAG_ALIGN) \
/* EFI64 system table */
+ ALIGN_UP(sizeof(struct multiboot2_tag_efi64), MULTIBOOT2_TAG_ALIGN) \
/* EFI memmap: Add an extra page since UEFI can alter the memory map */
+ ALIGN_UP(sizeof(struct multiboot2_tag_efi_mmap) + \
ALIGN_UP(mmap_info->map_size + 0x1000, 0x1000), MULTIBOOT2_TAG_ALIGN) \
/* END */
+ sizeof(struct multiboot2_tag);
}
EFI_STATUS
construct_mbi2(struct hv_loader *hvld, void **mbi_addr, struct efi_memmap_info *mmap_info)
{
uint64_t *mbistart;
uint64_t *p;
uint32_t mbi2_size;
struct multiboot_mmap *mmap;
struct acpi_table_rsdp *rsdp;
EFI_STATUS err;
rsdp = search_rsdp();
if (!rsdp)
return EFI_NOT_FOUND;
/* Get size only for mbi size calculation */
err = get_efi_memmap(mmap_info, 1);
if (err != EFI_SUCCESS && err != EFI_BUFFER_TOO_SMALL)
return err;
mbi2_size = get_mbi2_size(hvld, mmap_info, rsdp->length);
/* per UEFI spec v2.9: This allocation is guaranteed to be 8-bytes aligned */
err = allocate_pool(EfiLoaderData, mbi2_size, (void **)&mbistart);
if (err != EFI_SUCCESS)
goto out;
memset(mbistart, 0x0, mbi2_size);
/* Allocate temp buffer to hold memory map */
err = allocate_pool(EfiLoaderData,
(mmap_info->map_size / mmap_info->desc_size) * sizeof(struct multiboot_mmap),
(void **)&mmap);
if (err != EFI_SUCCESS)
goto out;
/*
* Get full memory map again.
* We have just allocated memory and the mmap_info will be different.
*/
err = get_efi_memmap(mmap_info, 0);
if (err != EFI_SUCCESS)
goto out;
/* total_size and reserved */
p = mbistart;
p += (2 * sizeof(uint32_t)) / sizeof(uint64_t);
/* Boot command line */
{
struct multiboot2_tag_string *tag = (struct multiboot2_tag_string *)p;
UINTN cmdline_size = hvld->get_boot_cmdsize(hvld);
tag->type = MULTIBOOT2_TAG_TYPE_CMDLINE;
tag->size = sizeof(struct multiboot2_tag_string) + cmdline_size;
memcpy(tag->string, hvld->get_boot_cmd(hvld), cmdline_size);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* Boot loader name */
{
struct multiboot2_tag_string *tag = (struct multiboot2_tag_string *)p;
tag->type = MULTIBOOT2_TAG_TYPE_BOOT_LOADER_NAME;
tag->size = sizeof(struct multiboot2_tag_string) + BOOT_LOADER_NAME_SIZE;
memcpy(tag->string, UEFI_BOOT_LOADER_NAME, BOOT_LOADER_NAME_SIZE);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* Modules */
{
unsigned i;
uint32_t mod_count = hvld->get_mod_count(hvld);
for (i = 0; i < mod_count; i++) {
struct multiboot2_tag_module *tag = (struct multiboot2_tag_module *)p;
MB_MODULE_INFO *modinfo = hvld->get_mods_info(hvld, i);
tag->type = MULTIBOOT2_TAG_TYPE_MODULE;
tag->size = sizeof(struct multiboot2_tag_module) + modinfo->cmdsize;
tag->mod_start = modinfo->mod_start;
tag->mod_end = modinfo->mod_end;
memcpy(tag->cmdline, modinfo->cmd, modinfo->cmdsize);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
}
/* Memory map */
{
unsigned i;
struct multiboot2_tag_mmap *tag = (struct multiboot2_tag_mmap *)p;
struct multiboot2_mmap_entry *e;
int32_t e820_count = 0;
err = fill_e820(hvld, mmap_info, mmap, &e820_count);
if (err != EFI_SUCCESS)
goto out;
tag->type = MULTIBOOT2_TAG_TYPE_MMAP;
tag->size = sizeof(struct multiboot2_tag_mmap) + sizeof(struct multiboot2_mmap_entry) * e820_count;
tag->entry_size = sizeof(struct multiboot2_mmap_entry);
tag->entry_version = 0;
for (i = 0, e = (struct multiboot2_mmap_entry *)tag->entries; i < e820_count; i++) {
e->addr = mmap[i].mm_base_addr;
e->len = mmap[i].mm_length;
e->type = mmap[i].mm_type;
e->zero = 0;
e = (struct multiboot2_mmap_entry *)((char *)e + sizeof(struct multiboot2_mmap_entry));
}
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* ACPI new */
{
struct multiboot2_tag_new_acpi *tag = (struct multiboot2_tag_new_acpi *)p;
tag->type = MULTIBOOT2_TAG_TYPE_ACPI_NEW;
tag->size = sizeof(struct multiboot2_tag_new_acpi) + rsdp->length;
memcpy((char *)tag->rsdp, (char *)rsdp, rsdp->length);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* EFI64 system table */
{
struct multiboot2_tag_efi64 *tag = (struct multiboot2_tag_efi64 *)p;
tag->type = MULTIBOOT2_TAG_TYPE_EFI64;
tag->size = sizeof(struct multiboot2_tag_efi64);
tag->pointer = (uint64_t)sys_table;
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* EFI memory map */
{
struct multiboot2_tag_efi_mmap *tag = (struct multiboot2_tag_efi_mmap *)p;
tag->type = MULTIBOOT2_TAG_TYPE_EFI_MMAP;
tag->size = sizeof(struct multiboot2_tag_efi_mmap) + mmap_info->map_size;
tag->descr_size = mmap_info->desc_size;
tag->descr_vers = mmap_info->desc_version;
memcpy((char *)tag->efi_mmap, (char *)mmap_info->mmap, mmap_info->map_size);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* END */
{
struct multiboot2_tag *tag = (struct multiboot2_tag *)p;
tag->type = MULTIBOOT2_TAG_TYPE_END;
tag->size = sizeof(struct multiboot2_tag);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
((uint32_t *)mbistart)[0] = (uint64_t)((char *)p - (char *)mbistart);
((uint32_t *)mbistart)[1] = 0;
*mbi_addr = (void *)mbistart;
return EFI_SUCCESS;
out:
free_pool(mbistart);
return err;
}
static EFI_STATUS