Currently the sched event handling may encounter data race problem, and
as a result some vcpus might be stalled forever.
One example can be wbinvd handling where more than 1 vcpus are doing
wbinvd concurrently. The following is a possible execution of 3 vcpus:
-------
0 1 2
req [Note: 0]
req bit0 set [Note: 1]
IPI -> 0
req bit2 set
IPI -> 2
VMExit
req bit2 cleared
wait
vcpu2 descheduled
VMExit
req bit0 cleared
wait
vcpu0 descheduled
signal 0
event0->set=true
wake 0
signal 2
event2->set=true [Note: 3]
wake 2
vcpu2 scheduled
event2->set=false
resume
req
req bit0 set
IPI -> 0
req bit1 set
IPI -> 1
(doesn't matter)
vcpu0 scheduled [Note: 4]
signal 0
event0->set=true
(no wake) [Note: 2]
event0->set=false (the rest doesn't matter)
resume
Any VMExit
req bit0 cleared
wait
idle running
(blocked forever)
Notes:
0: req: vcpu_make_request(vcpu, ACRN_REQUEST_WAIT_WBINVD).
1: req bit: Bit in pending_req_bits. Bit0 stands for bit for vcpu0.
2: In function signal_event, At this time the event->waiting_thread
is not NULL, so wake_thread will not execute
3: eventX: struct sched_event of vcpuX.
4: In function wait_event, the lock does not strictly cover the execution between
schedule() and event->set=false, so other threads may kick in.
-----
As shown in above example, before the last random VMExit, vcpu0 ended up
with request bit set but event->set==false, so blocked forever.
This patch proposes to change event->set from a boolean variable to an
integer. The semantic is very similar to a semaphore. The wait_event
will add 1 to this value, and block when this value is > 0, whereas signal_event
will decrease this value by 1.
It may happen that this value was decreased to a negative number but that
is OK. As long as the wait_event and signal_event are paired and
program order is observed (that is, wait_event always happens-before signal_event
on a single vcpu), this value will eventually be 0.
Tracked-On: #6405
Signed-off-by: Yifan Liu <yifan1.liu@intel.com>
Remove the acpi loading function from elf_loader, rawimage_loaer and
bzimage_loader, and call it together in vm_sw_loader.
Now the vm_sw_loader's job is not just loading sw, so we rename it to
prepare_os_image.
Tracked-On: #6323
Signed-off-by: Zhou, Wu <wu.zhou@intel.com>
Reviewed-by: Victor Sun <victor.sun@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Rename KERNEL_ZEPHYR to KERNEL_RAWIMAGE. Added new type "KERNEL_ELF".
Add CONFIG_GUEST_KERNEL_RAWIMAGE, CONFIG_GUEST_KERNEL_ELF and/or
CONFIG_GUEST_KERNEL_BZIMAGE to config.h if it's configured.
Tracked-On: #6323
Signed-off-by: Yang,Yu-chu <yu-chu.yang@intel.com>
Reviewed-by: Victor Sun <victor.sun@intel.com>
Previously we only support loading raw format of zephyr image as prelaunched
Zephyr VM, this would cause guest F segment overridden issue because the zephyr
raw image covers memory space from 0x1000 to 0x100000 upper. To fix this issue,
we should support ELF format image loading so that parse and load the multiple
segments from ELF image directly.
Tracked-On: #6323
Signed-off-by: Victor Sun <victor.sun@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
When pass-thru GPU to pre-launched Linux guest,
need to pass GPU OpRegion to the guest.
Here's the detailed steps:
1. reserve a memory region in ve820 table for GPU OpRegion
2. build EPT mapping for GPU OpRegion to pass-thru OpRegion to guest
3. emulate the pci config register for OpRegion
For the third step, here's detailed description:
The address of OpRegion locates on PCI config space offset 0xFC,
Normal Linux guest won't write this register,
so we can regard this register as read-only.
When guest reads this register, return the emulated value.
When guest writes this register, ignore the operation.
Tracked-On: #6387
Signed-off-by: Liu,Junming <junming.liu@intel.com>
ACRN does not support the variable range vMTRR. The default
memory type of vMTRR is UC. With this vMTRR emulation guest VM
such as Linux refuses to map the MMIO address space as WB. In
order to get better performance SHM BAR of ivshmem is mapped
with PAT ignored and memory type of SHM BAR is fixed to WB.
Tracked-On: #6389
Signed-off-by: Jian Jun Chen <jian.jun.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Relocate ACPI address to 0x7fe00000 and ACPI NVS to 0x7ff00000 correspondingly.
In this case, we could include TPM event log region [0x7ffb0000, 0x80000000)
into ACPI NVS.
Tracked-On: #6320
Signed-off-by: Fei Li <fei1.li@intel.com>
ACRN used to prepare the vTPM2 ACPI Table for pre-launched VM at the build stage
using config tools. This is OK if the TPM2 ACPI Table never changes. However,
TPM2 ACPI Table may be changed in some conditions: change BIOS configuration or
update BIOS.
This patch do TPM2 fixup to update the vTPM2 ACPI Table and TPM2 MMIO resource
configuration according to the physical TPM2 ACPI Table.
Tracked-On: #6366
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Signed-off-by: Fei Li <fei1.li@intel.com>
1. add a name field to indicate what the MMIO Device is.
2. add two more MMIO resource to the acrn_mmiodev data structure.
Tracked-On: #6366
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Signed-off-by: Fei Li <fei1.li@intel.com>
ACRN could run without XSAVE Capability. So remove XSAVE dependence to support
more (hardware or virtual) platforms.
Tracked-On: #6287
Signed-off-by: Fei Li <fei1.li@intel.com>
When guest kernel has multiple loading segments like ELF format image, just
define one load address in sw_kernel_info struct is meaningless.
The patch removes kernel_load_addr member in struct sw_kernel_info, the load
address should be parsed in each specified format image processing.
Tracked-On: #6323
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
In some scenarios (e.g., nested) where lapic-pt is enabled for a vcpu
running on a pcpu hosting console timer, the hv console will be
inaccessible.
This patch adds the console callback to every VM-exit event so that the
console can still be somewhat functional under such circumstance.
Since this is VM-exit driven, the VM-exit/second can be low in certain
cases (e.g., idle or running stress workload). In extreme cases where
the guest panics/hangs, there will be no VM-exits at all.
In most cases, the shell is laggy but functional (probably enough for
debugging purpose).
Tracked-On: #6312
Signed-off-by: Yifan Liu <yifan1.liu@intel.com>
Because the emulation code is for both split-lock and uc-lock,
rename splitlock.c/splitlock.h to lock_instr_emul.c/lock_instr_emul.h
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Because the emulation code is for both split-lock and uc-lock, Changed
these API names:
vcpu_kick_splitlock_emulation() -> vcpu_kick_lock_instr_emulation()
vcpu_complete_splitlock_emulation() -> vcpu_complete_lock_instr_emulation()
emulate_splitlock() -> emulate_lock_instr()
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Split-lock emulation can be re-used for uc-lock. In emulate_splitlock(),
it only work if this vmexit is for #AC trap and guest do not handle
split-lock and HV enable #AC for splitlock.
Add another condition to let emulate_splitlock() also work for #GP trap
and guest do not handle uc-lock and HV enable #GP for uc-lock.
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
When ACRN uses decode_instruction to emulate split-lock/uc-lock
instruction, It is actually a try-decode to see if it is XCHG.
If the instruction is XCHG instruction, ACRN must emulate it
(inject #PF if it is triggered) with peer VCPUs paused, and advance
the guest IP. If the instruction is a LOCK prefixed instruction
with accessing the UC memory, ACRN Halted the peer VCPUs, and
advance the IP to skip the LOCK prefix, and then let the VCPU
Executes one instruction by enabling IRQ Windows vm-exit. For
other cases, ACRN injects the exception back to VCPU without
emulating it.
So change the API to decode_instruction(vcpu, bool full_decode),
when full_decode is true, the API does same thing as before. When
full_decode is false, the different is if decode_instruction() meet unknown
instruction, will keep return = -1 and do not inject #UD. We can use
this to distinguish that an #UD has been skipped, and need inject #AC/#GP back.
Tracked-On: #6299
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
To add brakets for '(char *)(ptr)' in MACRO
container_of(), which may be used recursively.
Tracked-On: #6284
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>
Common structures are used by DM, kernel, HV. Aligned attribute might
caused structures size mismatch between DM/HV and kernel, as kernel uses
default GCC alignment.
So, make DM/HV also use the default GCC alignment.
Tracked-On: #6282
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
IC_ADD_HV_VDEV -> ACRN_IOCTL_CREATE_VDEV
IC_REMOVE_HV_VDEV -> ACRN_IOCTL_DESTROY_VDEV
struct acrn_emul_dev -> struct acrn_vdev
Also, move struct acrn_vdev to acrn_common.h as this structure is used
by both DM and HV.
Tracked-On: #6282
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
IC_ASSIGN_MMIODEV -> ACRN_IOCTL_ASSIGN_MMIODEV
IC_DEASSIGN_MMIODEV -> ACRN_IOCTL_DEASSIGN_MMIODEV
struct acrn_mmiodev has slight change. Move struct acrn_mmiodev into
acrn_common.h because it is used by both DM and HV.
Tracked-On: #6282
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
IC_ASSIGN_PCIDEV -> ACRN_IOCTL_ASSIGN_PCIDEV
IC_DEASSIGN_PCIDEV -> ACRN_IOCTL_DEASSIGN_PCIDEV
QUIRK_PTDEV -> ACRN_PTDEV_QUIRK_ASSIGN
struct acrn_assign_pcidev -> struct acrn_pcidev
Move struct acrn_pcidev into acrn_common.h because it is used by both
DM and HV.
Tracked-On: #6282
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
struct hc_platform_info -> struct acrn_platform_info
MAX_PLATFORM_LAPIC_IDS -> ACRN_PLATFORM_LAPIC_IDS_MAX
A layout change to the struct hc_platform_info is that move
max_kata_containers to back of vm_config_size,
uint16_t max_vcpus_per_vm;
uint16_t max_vms;
uint32_t vm_config_size;
uint64_t max_kata_containers;
Then, they are nature 64-bits aligned.
Tracked-On: #6282
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
MSR_IA32_VMX_EPT_VPID_CAP is 64 bits. Using 32 bits MACROs with it may
cause the bit expression wrong.
Unify the MSR_IA32_VMX_EPT_VPID_CAP operation with 64 bits definition.
Tracked-On: #5923
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
It seems important that passthru device's max payload settings match
the settings on the native device otherwise passthru device may not work.
So we have to set vrp's max payload capacity as native root port
otherwise we may accidentally change passthru device's max payload
since during guest OS's pci device enumeration, pass-thru device will
renegotiate its max payload's setting with vrp.
Tracked-On: #5915
Signed-off-by: Rong Liu <rong.l.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
We should not hardcode the VM ramdisk load address right after kernel
load address because of two reasons:
1. Per Linux kernel boot protocol, the Kernel need a size of
contiguous memory(i.e. init_size field in zeropage) from
its load address to boot, then the address would overlap
with ramdisk;
2. The hardcoded address could not be ensured as a valid address
in guest e820 table, especially with a huge ramdisk;
Also we should not hardcode the VM kernel load address to its pref_address
which work for non-relocatable kernel only. For a relocatable kernel,
it could run from any valid address where bootloader load to.
The patch will set the VM kernel and ramdisk load address by scanning
guest e820 table with find_space_from_ve820() api:
1. For SOS VM, the ramdisk has been loaded by multiboot bootloader
already so set the load address as module source address,
the relocatable kernel would be relocated to a appropriate address
out space of hypervisor and boot modules to avoid guest memory
copy corruption;
2. For pre-launched VM, the kernel would be loaded to pref_address
first, then ramdisk will be put to a appropriate address out space
of kernel according to guest memory layout and maximum ramdisk
address limit under 4GB;
Tracked-On: #5879
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
The API would search ve820 table and return a valid GPA when the requested
size of memory is available in the specified memory range, or return
INVALID_GPA if the requested memory slot is not available;
Tracked-On: #5626
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Hypervisor use e820_alloc_memory() api to allocate memory for trampoline code
and ept pages, whereas the usable ram in hv_e820 might include efi boot service
region if system boot from uefi environment, this would result in some uefi
service broken in SOS. These boot service region should be filtered from
hv_e820.
This patch will parse the efi memory descriptor entries info from efi memory
map pointer when system boot from uefi environment, and then initialize hv_e820
accordingly, that all efi boot service region would be kept as reserved in
hv_e820.
Please note the original efi memory map could be above 4GB address space,
so the efi memory parsing process must be done after enable_paging().
Tracked-On: #5626
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
When hypervisor boot from efi environment, the efi memory layout should be
considered as main memory map reference for hypervisor use. This patch add
function that parses the efi memory descriptor entries info from efi memory
map pointer and stores the info into a static hv_memdesc[] array.
Tracked-On: #5626
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
This patch has below changes:
1. rename mi_efi_info to uefi_info in struct acrn_boot_info;
2. remove redundant "efi_" prefix for efi_info struct members;
3. The efi_info structure in acrn_boot_info struct is defined as
same as Linux kernel so the native efi info from boot loader
is passed to SOS zeropage with memcpy() api directly. Now replace
memcpy() with detailed struct member assignment;
4. add boot_from_uefi() api;
Tracked-On: #5661
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Given the structure in multiboot.h could be used for any boot protocol,
use a more generic name "boot.h" instead;
Tracked-On: #5661
Signed-off-by: Victor Sun <victor.sun@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Replace rdstc() and get_tsc_khz() with their architectural agnostic
counterparts cpu_ticks() and cpu_tickrate().
Tracked-On: #5920
Signed-off-by: Yi Liang <yi.liang@intel.com>
e820_alloc_memory() splits one E820 entry into two entries. With vEPT
enabled, e820_alloc_memory() is called one more. On some platforms, the
e820 entries might exceed 32.
Enlarge E820_MAX_ENTRIES to 64. Please note, it must be less than 128
due to constrain of zeropage. Linux kernel defines it as 128.
Tracked-On: #6168
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
get_ept_entry() actually returns the EPTP of a VM. So rename it to
get_eptp() for readability.
Tracked-On: #5923
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
We need to deny accesses from SOS to the HV owned UART device, otherwise
SOS could have direct access to this physical device and mess up the HV
console.
If ACRN debug UART is configured as PIO based, For example,
CONFIG_SERIAL_PIO_BASE is generated from acrn-config tool, or the UART
config is overwritten by hypervisor parameter "uart=port@<port address>",
it could run into problem if ACRN doesn't emulate this UART PIO port
to SOS. For example:
- none of the ACRN emulated vUART devices has same PIO port with the
port of the debug UART device.
- ACRN emulates PCI vUART for SOS (configure "console_vuart" with
PCI_VUART in the scenario configuration)
This patch fixes the above issue by masking PIO accesses from SOS.
deny_hv_owned_devices() is moved after setup_io_bitmap() where
vm->arch_vm.io_bitmap is initialized.
Commit 50d852561 ("HV: deny HV owned PCI bar access from SOS") handles
the case that ACRN debug UART is configured as a PCI device. e.g.,
hypervisor parameter "uart=bdf@<BDF value>" is appended.
If the hypervisor debug UART is MMIO based, need to configured it as
a PCI type device, so that it can be hidden from SOS.
Tracked-On: #5923
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
When guest doing BAR re-programming, we should check whether
the base address of the BAR is valid.This patch does this check by:
1. whether the gpa is located in the responding MMIO window
2. whether the gpa is aligned with the BAR size
Tracked-On: #6011
Signed-off-by: Tao Yuhong <yuhong.tao@intel.com>
Reviewed-by: Eddie Dong <eddie.dong@intel.com>
Reviewed-by: Li Fei <fei1.li@intel.com>
With shadow EPT, the hypervisor walks through guest EPT table:
* If the entry is not present in guest EPT, ACRN injects EPT_VIOLATION
to L1 VM and resumes to L1 VM.
* If the entry is present in guest EPT, do the EPT_MISCONFIG check.
Inject EPT_MISCONFIG to L1 VM if the check failed.
* If the entry is present in guest EPT, do permission check.
Reflect EPT_VIOLATION to L1 VM if the check failed.
* If the entry is present in guest EPT but shadow EPT entry is not
present, create the shadow entry and resumes to L2 VM.
* If the entry is present in guest EPT but the GPA in the entry is
invalid, injects EPT_VIOLATION to L1 VM and resumes L1 VM.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
'struct nept_desc' is used to associate guest EPTP with a shadow EPTP.
It's created in the first reference and be freed while no reference.
The life cycle seems like,
While guest VMCS VMX_EPT_POINTER_FULL is changed, the 'struct nept_desc'
of the new guest EPTP is referenced; the 'struct nept_desc' of the old
guest EPTP is dereferenced.
While guest VMCS be cleared(by VMCLEAR in L1 VM), the 'struct nept_desc'
of the old guest EPTP is dereferenced.
While a new guest VMCS be loaded(by VMPTRLD in L1 VM), the 'struct
nept_desc' of the new guest EPTP is referenced. The 'struct nept_desc'
of the old guest EPTP is dereferenced.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
To shadow guest EPT, the hypervisor needs construct a shadow EPT for each
guest EPT. The key to associate a shadow EPT and a guest EPT is the EPTP
(EPT pointer). This patch provides following structure to do the association.
struct nept_desc {
/*
* A shadow EPTP.
* The format is same with 'EPT pointer' in VMCS.
* Its PML4 address field is a HVA of the hypervisor.
*/
uint64_t shadow_eptp;
/*
* An guest EPTP configured by L1 VM.
* The format is same with 'EPT pointer' in VMCS.
* Its PML4 address field is a GPA of the L1 VM.
*/
uint64_t guest_eptp;
uint32_t ref_count;
};
Due to lack of dynamic memory allocation of the hypervisor, a array
nept_bucket of type 'struct nept_desc' is introduced to store those
association information. A guest EPT might be shared between different
L2 vCPUs, so this patch provides several functions to handle the
reference of the structure.
Interface get_shadow_eptp() also is introduced. To find the shadow EPTP
of a specified guest EPTP.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Shadow EPT uses lots of pages to construct the shadow page table. To
utilize the memory more efficient, a page poll sept_page_pool is
introduced.
For simplicity, total platform RAM size is considered to calculate the
memory needed for shadow page tables. This is not an accurate upper
bound. This can satisfy typical use-cases where there is not a lot
of overcommitment and sharing of memory between L2 VMs.
Memory of the pool is marked as reserved from E820 table in early stage.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Shuo A Liu <shuo.a.liu@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Nested VM exits happen when vCPU is in guest mode (VMCS02 is current).
Initially we reflect all nested VM exits to L1 hypervisor. To prepare
the environment to run L1 guest:
- restore some VMCS fields to the value as what L1 hypervisor programmed.
- VMCLEAR VMCS02, VMPTRLD VMCS01 and enable VMCS shadowing.
- load the non-shadowing host states from VMCS12 to VMCS01 guest states.
- VMRESUME to L1 guest with this modified VMCS01.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Alexander Merritt <alex.merritt@intel.com>
invvpid and invept instructions cause VM exits unconditionally.
For initial support, we pass all the instruction operands as is
to the pCPU.
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Implement the VMLAUNCH and VMRESUME instructions, allowing a L1
hypervisor to run nested guests.
- merge VMCS control fields and VMCS guest fields to VMCS02
- clear shadow VMCS indicator on VMCS02 and load VMCS02 as current
- set VMCS12 launch state to "launched" in VMLAUNCH handler
Tracked-On: #5923
Signed-off-by: Sainath Grandhi <sainath.grandhi@intel.com>
Signed-off-by: Zide Chen <zide.chen@intel.com>
Signed-off-by: Alex Merritt <alex.merritt@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
Signature of RTCT ACPI table maybe "PTCT"(v1) or "RTCT"(v2).
and the MAGIC number in CRL header is also changed from "PTCM"
to "RTCM".
This patch refine the code to detect RTCT table for both
v1 and v2.
Tracked-On: #6020
Signed-off-by: Yonghua Huang <yonghua.huang@intel.com>