/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include "guest/instr_emul.h" static void complete_ioreq(struct vhm_request *vhm_req) { vhm_req->valid = 0; atomic_store32(&vhm_req->processed, REQ_STATE_FREE); } /** * @pre io_req->type == REQ_PORTIO * * @remark This function must be called when \p io_req is completed, after * either a previous call to emulate_io() returning 0 or the corresponding VHM * request having transferred to the COMPLETE state. */ static void emulate_pio_post(struct vcpu *vcpu, struct io_request *io_req) { struct pio_request *pio_req = &io_req->reqs.pio; uint64_t mask = 0xFFFFFFFFUL >> (32UL - 8UL * pio_req->size); if (pio_req->direction == REQUEST_READ) { uint64_t value = (uint64_t)pio_req->value; uint64_t rax = vcpu_get_gpreg(vcpu, CPU_REG_RAX); rax = ((rax) & ~mask) | (value & mask); vcpu_set_gpreg(vcpu, CPU_REG_RAX, rax); } } /** * @pre vcpu->req.type == REQ_PORTIO * * @remark This function must be called after the VHM request corresponding to * \p vcpu being transferred to the COMPLETE state. */ void dm_emulate_pio_post(struct vcpu *vcpu) { uint16_t cur = vcpu->vcpu_id; union vhm_request_buffer *req_buf = NULL; struct io_request *io_req = &vcpu->req; struct pio_request *pio_req = &io_req->reqs.pio; struct vhm_request *vhm_req; req_buf = (union vhm_request_buffer *)(vcpu->vm->sw.io_shared_page); vhm_req = &req_buf->req_queue[cur]; pio_req->value = vhm_req->reqs.pio.value; /* VHM emulation data already copy to req, mark to free slot now */ complete_ioreq(vhm_req); emulate_pio_post(vcpu, io_req); } /** * @pre vcpu->req.type == REQ_MMIO * * @remark This function must be called when \p io_req is completed, after * either a previous call to emulate_io() returning 0 or the corresponding VHM * request having transferred to the COMPLETE state. */ void emulate_mmio_post(struct vcpu *vcpu, struct io_request *io_req) { struct mmio_request *mmio_req = &io_req->reqs.mmio; if (mmio_req->direction == REQUEST_READ) { /* Emulate instruction and update vcpu register set */ emulate_instruction(vcpu); } } /** * @pre vcpu->req.type == REQ_MMIO * * @remark This function must be called after the VHM request corresponding to * \p vcpu being transferred to the COMPLETE state. */ void dm_emulate_mmio_post(struct vcpu *vcpu) { uint16_t cur = vcpu->vcpu_id; struct io_request *io_req = &vcpu->req; struct mmio_request *mmio_req = &io_req->reqs.mmio; union vhm_request_buffer *req_buf; struct vhm_request *vhm_req; req_buf = (union vhm_request_buffer *)(vcpu->vm->sw.io_shared_page); vhm_req = &req_buf->req_queue[cur]; mmio_req->value = vhm_req->reqs.mmio.value; /* VHM emulation data already copy to req, mark to free slot now */ complete_ioreq(vhm_req); emulate_mmio_post(vcpu, io_req); } #ifdef CONFIG_PARTITION_MODE static void io_instr_dest_handler(struct io_request *io_req) { struct pio_request *pio_req = &io_req->reqs.pio; if (pio_req->direction == REQUEST_READ) { pio_req->value = 0xFFFFFFFFU; } } #endif void emulate_io_post(struct vcpu *vcpu) { union vhm_request_buffer *req_buf; struct vhm_request *vhm_req; req_buf = (union vhm_request_buffer *)vcpu->vm->sw.io_shared_page; vhm_req = &req_buf->req_queue[vcpu->vcpu_id]; if ((vhm_req->valid == 0) || (atomic_load32(&vhm_req->processed) != REQ_STATE_COMPLETE)) { return; } /* * If vcpu is in Zombie state and will be destroyed soon. Just * mark ioreq done and don't resume vcpu. */ if (vcpu->state == VCPU_ZOMBIE) { complete_ioreq(vhm_req); return; } switch (vcpu->req.type) { case REQ_MMIO: request_vcpu_pre_work(vcpu, ACRN_VCPU_MMIO_COMPLETE); break; case REQ_PORTIO: case REQ_PCICFG: /* REQ_PORTIO on 0xcf8 & 0xcfc may switch to REQ_PCICFG in some * cases. It works to apply the post-work for REQ_PORTIO on * REQ_PCICFG because the format of the first 28 bytes of * REQ_PORTIO & REQ_PCICFG requests are exactly the same and * post-work is mainly interested in the read value. */ dm_emulate_pio_post(vcpu); break; default: /* REQ_WP can only be triggered on writes which do not need * post-work. Just mark the ioreq done. */ complete_ioreq(vhm_req); break; } resume_vcpu(vcpu); } /** * Try handling the given request by any port I/O handler registered in the * hypervisor. * * @pre io_req->type == REQ_PORTIO * * @return 0 - Successfully emulated by registered handlers. * @return -ENODEV - No proper handler found. * @return -EIO - The request spans multiple devices and cannot be emulated. */ int32_t hv_emulate_pio(struct vcpu *vcpu, struct io_request *io_req) { int32_t status = -ENODEV; uint16_t port, size; uint32_t mask; struct vm *vm = vcpu->vm; struct pio_request *pio_req = &io_req->reqs.pio; struct vm_io_handler *handler; port = (uint16_t)pio_req->address; size = (uint16_t)pio_req->size; mask = 0xFFFFFFFFU >> (32U - 8U * size); for (handler = vm->arch_vm.io_handler; handler != NULL; handler = handler->next) { uint16_t base = handler->desc.addr; uint16_t end = base + (uint16_t)handler->desc.len; if ((port >= end) || (port + size <= base)) { continue; } else if (!((port >= base) && ((port + size) <= end))) { pr_fatal("Err:IO, port 0x%04x, size=%hu spans devices", port, size); status = -EIO; break; } else { if (pio_req->direction == REQUEST_WRITE) { handler->desc.io_write(handler, vm, port, size, pio_req->value & mask); pr_dbg("IO write on port %04x, data %08x", port, pio_req->value & mask); } else { pio_req->value = handler->desc.io_read(handler, vm, port, size); pr_dbg("IO read on port %04x, data %08x", port, pio_req->value); } status = 0; break; } } return status; } /** * Use registered MMIO handlers on the given request if it falls in the range of * any of them. * * @pre io_req->type == REQ_MMIO * * @return 0 - Successfully emulated by registered handlers. * @return -ENODEV - No proper handler found. * @return -EIO - The request spans multiple devices and cannot be emulated. */ static int32_t hv_emulate_mmio(struct vcpu *vcpu, struct io_request *io_req) { int status = -ENODEV; uint64_t address, size; struct list_head *pos; struct mmio_request *mmio_req = &io_req->reqs.mmio; struct mem_io_node *mmio_handler = NULL; address = mmio_req->address; size = mmio_req->size; list_for_each(pos, &vcpu->vm->mmio_list) { uint64_t base, end; mmio_handler = list_entry(pos, struct mem_io_node, list); base = mmio_handler->range_start; end = mmio_handler->range_end; if ((address + size <= base) || (address >= end)) { continue; } else if (!((address >= base) && (address + size <= end))) { pr_fatal("Err MMIO, address:0x%llx, size:%x", address, size); return -EIO; } else { /* Handle this MMIO operation */ status = mmio_handler->read_write(vcpu, io_req, mmio_handler->handler_private_data); break; } } return status; } /** * Handle an I/O request by either invoking a hypervisor-internal handler or * deliver to VHM. * * @return 0 - Successfully emulated by registered handlers. * @return IOREQ_PENDING - The I/O request is delivered to VHM. * @return -EIO - The request spans multiple devices and cannot be emulated. * @return Negative on other errors during emulation. */ int32_t emulate_io(struct vcpu *vcpu, struct io_request *io_req) { int32_t status; switch (io_req->type) { case REQ_PORTIO: status = hv_emulate_pio(vcpu, io_req); break; case REQ_MMIO: case REQ_WP: status = hv_emulate_mmio(vcpu, io_req); break; default: /* Unknown I/O request type */ status = -EINVAL; break; } if (status == -ENODEV) { #ifdef CONFIG_PARTITION_MODE /* * No handler from HV side, return all FFs on read * and discard writes. */ io_instr_dest_handler(io_req); status = 0; #else /* * No handler from HV side, search from VHM in Dom0 * * ACRN insert request to VHM and inject upcall. */ status = acrn_insert_request_wait(vcpu, io_req); if (status != 0) { /* here for both IO & MMIO, the direction, address, * size definition is same */ struct pio_request *pio_req = &io_req->reqs.pio; pr_fatal("%s Err: access dir %d, type %d, " "addr = 0x%llx, size=%lu", __func__, pio_req->direction, io_req->type, pio_req->address, pio_req->size); } else { status = IOREQ_PENDING; } #endif } return status; } int32_t pio_instr_vmexit_handler(struct vcpu *vcpu) { int32_t status; uint64_t exit_qual; int32_t cur_context_idx = vcpu->arch_vcpu.cur_context; struct io_request *io_req = &vcpu->req; struct pio_request *pio_req = &io_req->reqs.pio; exit_qual = vcpu->arch_vcpu.exit_qualification; io_req->type = REQ_PORTIO; pio_req->size = vm_exit_io_instruction_size(exit_qual) + 1UL; pio_req->address = vm_exit_io_instruction_port_number(exit_qual); if (vm_exit_io_instruction_access_direction(exit_qual) == 0UL) { pio_req->direction = REQUEST_WRITE; pio_req->value = (uint32_t)vcpu_get_gpreg(vcpu, CPU_REG_RAX); } else { pio_req->direction = REQUEST_READ; } TRACE_4I(TRACE_VMEXIT_IO_INSTRUCTION, (uint32_t)pio_req->address, (uint32_t)pio_req->direction, (uint32_t)pio_req->size, (uint32_t)cur_context_idx); status = emulate_io(vcpu, io_req); if (status == 0) { emulate_pio_post(vcpu, io_req); } else if (status == IOREQ_PENDING) { status = 0; } return status; } static void register_io_handler(struct vm *vm, struct vm_io_handler *hdlr) { if (vm->arch_vm.io_handler != NULL) { hdlr->next = vm->arch_vm.io_handler; } vm->arch_vm.io_handler = hdlr; } static void empty_io_handler_list(struct vm *vm) { struct vm_io_handler *handler = vm->arch_vm.io_handler; struct vm_io_handler *tmp; while (handler != NULL) { tmp = handler; handler = tmp->next; free(tmp); } vm->arch_vm.io_handler = NULL; } void free_io_emulation_resource(struct vm *vm) { empty_io_handler_list(vm); } void allow_guest_pio_access(struct vm *vm, uint16_t port_address, uint32_t nbytes) { uint16_t address = port_address; uint32_t *b; uint32_t i; b = (uint32_t *)vm->arch_vm.io_bitmap; for (i = 0U; i < nbytes; i++) { b[address >> 5U] &= ~(1U << (address & 0x1fU)); address++; } } static void deny_guest_pio_access(struct vm *vm, uint16_t port_address, uint32_t nbytes) { uint16_t address = port_address; uint32_t *b; uint32_t i; b = (uint32_t *)vm->arch_vm.io_bitmap; for (i = 0U; i < nbytes; i++) { b[address >> 5U] |= (1U << (address & 0x1fU)); address++; } } static struct vm_io_handler *create_io_handler(uint32_t port, uint32_t len, io_read_fn_t io_read_fn_ptr, io_write_fn_t io_write_fn_ptr) { struct vm_io_handler *handler; handler = calloc(1U, sizeof(struct vm_io_handler)); if (handler != NULL) { handler->desc.addr = port; handler->desc.len = len; handler->desc.io_read = io_read_fn_ptr; handler->desc.io_write = io_write_fn_ptr; } else { pr_err("Error: out of memory"); } return handler; } void setup_io_bitmap(struct vm *vm) { if (is_vm0(vm)) { (void)memset(vm->arch_vm.io_bitmap, 0x00U, CPU_PAGE_SIZE * 2); } else { /* block all IO port access from Guest */ (void)memset(vm->arch_vm.io_bitmap, 0xFFU, CPU_PAGE_SIZE * 2); } } void register_io_emulation_handler(struct vm *vm, struct vm_io_range *range, io_read_fn_t io_read_fn_ptr, io_write_fn_t io_write_fn_ptr) { struct vm_io_handler *handler = NULL; if ((io_read_fn_ptr == NULL) || (io_write_fn_ptr == NULL)) { pr_err("Invalid IO handler."); return; } if (is_vm0(vm)) { deny_guest_pio_access(vm, range->base, range->len); } handler = create_io_handler(range->base, range->len, io_read_fn_ptr, io_write_fn_ptr); register_io_handler(vm, handler); } int register_mmio_emulation_handler(struct vm *vm, hv_mem_io_handler_t read_write, uint64_t start, uint64_t end, void *handler_private_data) { int status = -EINVAL; struct mem_io_node *mmio_node; if ((vm->hw.created_vcpus > 0U) && vm->hw.vcpu_array[0]->launched) { ASSERT(false, "register mmio handler after vm launched"); return status; } /* Ensure both a read/write handler and range check function exist */ if ((read_write != NULL) && (end > start)) { /* Allocate memory for node */ mmio_node = (struct mem_io_node *)calloc(1U, sizeof(struct mem_io_node)); /* Ensure memory successfully allocated */ if (mmio_node != NULL) { /* Fill in information for this node */ mmio_node->read_write = read_write; mmio_node->handler_private_data = handler_private_data; INIT_LIST_HEAD(&mmio_node->list); list_add(&mmio_node->list, &vm->mmio_list); mmio_node->range_start = start; mmio_node->range_end = end; /* * SOS would map all its memory at beginning, so we * should unmap it. But UOS will not, so we shouldn't * need to unmap it. */ if (is_vm0(vm)) { ept_mr_del(vm, (uint64_t *)vm->arch_vm.nworld_eptp, start, end - start); } /* Return success */ status = 0; } } /* Return status to caller */ return status; } void unregister_mmio_emulation_handler(struct vm *vm, uint64_t start, uint64_t end) { struct list_head *pos, *tmp; struct mem_io_node *mmio_node; list_for_each_safe(pos, tmp, &vm->mmio_list) { mmio_node = list_entry(pos, struct mem_io_node, list); if ((mmio_node->range_start == start) && (mmio_node->range_end == end)) { /* assume only one entry found in mmio_list */ list_del_init(&mmio_node->list); free(mmio_node); break; } } }