/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include int32_t validate_pstate(const struct acrn_vm *vm, uint64_t perf_ctl) { /* Note: * 1. We don't validate Px request from SOS_VM for now; * 2. Px request will be rejected if no VM Px data is set, even guest is running intel_pstate driver; * 3. The Pstate frequency varies from LFM to HFM and then TFM, but not all frequencies between * LFM to TFM are mapped in ACPI table. For acpi-cpufreq driver, the target Px value in MSR * PERF_CTL should be matched with control value of px_data which come from ACPI table, * but for intel_pstate driver the target Px value could be any value that between LFM to HFM. * HV has no idea what driver guest is running, so we just check the LFM/TFM range here. * Only checking Px by indexing control value in px_data might lost the guest Px request. */ int32_t ret = -1; if (is_sos_vm(vm)) { ret = 0; } else { uint8_t px_cnt = vm->pm.px_cnt; const struct cpu_px_data *px_data = vm->pm.px_data; if ((px_cnt != 0U) && (px_data != NULL)) { uint64_t px_target_val, max_px_ctl_val, min_px_ctl_val; /* get max px control value, should be for p(0), i.e. TFM. */ max_px_ctl_val = ((px_data[0].control & 0xff00UL) >> 8U); /* get min px control value, should be for p(px_cnt-1), i.e. LFM. */ min_px_ctl_val = ((px_data[px_cnt - 1U].control & 0xff00UL) >> 8U); px_target_val = ((perf_ctl & 0xff00UL) >> 8U); if ((px_target_val <= max_px_ctl_val) && (px_target_val >= min_px_ctl_val)) { ret = 0; } } } return ret; } static void vm_setup_cpu_px(struct acrn_vm *vm) { uint32_t px_data_size; struct cpu_state_info *pm_state_info = get_cpu_pm_state_info(); vm->pm.px_cnt = 0U; (void)memset(vm->pm.px_data, 0U, MAX_PSTATE * sizeof(struct cpu_px_data)); if ((pm_state_info->px_cnt != 0U) && (pm_state_info->px_data != NULL)) { ASSERT((pm_state_info->px_cnt <= MAX_PSTATE), "failed to setup cpu px"); vm->pm.px_cnt = pm_state_info->px_cnt; px_data_size = ((uint32_t)vm->pm.px_cnt) * sizeof(struct cpu_px_data); (void)memcpy_s(vm->pm.px_data, px_data_size, pm_state_info->px_data, px_data_size); } } static void vm_setup_cpu_cx(struct acrn_vm *vm) { uint32_t cx_data_size; struct cpu_state_info *pm_state_info = get_cpu_pm_state_info(); vm->pm.cx_cnt = 0U; (void)memset(vm->pm.cx_data, 0U, MAX_CSTATE * sizeof(struct cpu_cx_data)); if ((pm_state_info->cx_cnt != 0U) && (pm_state_info->cx_data != NULL)) { ASSERT((pm_state_info->cx_cnt <= MAX_CX_ENTRY), "failed to setup cpu cx"); vm->pm.cx_cnt = pm_state_info->cx_cnt; cx_data_size = ((uint32_t)vm->pm.cx_cnt) * sizeof(struct cpu_cx_data); /* please note pm.cx_data[0] is a empty space holder, * pm.cx_data[1...MAX_CX_ENTRY] would be used to store cx entry datas. */ (void)memcpy_s(vm->pm.cx_data + 1, cx_data_size, pm_state_info->cx_data, cx_data_size); } } static inline void init_cx_port(struct acrn_vm *vm) { uint8_t cx_idx; for (cx_idx = 2U; cx_idx <= vm->pm.cx_cnt; cx_idx++) { struct cpu_cx_data *cx_data = vm->pm.cx_data + cx_idx; if (cx_data->cx_reg.space_id == SPACE_SYSTEM_IO) { uint16_t port = (uint16_t)cx_data->cx_reg.address; allow_guest_pio_access(vm, port, 1U); } } } static void vm_setup_cpu_state(struct acrn_vm *vm) { vm_setup_cpu_px(vm); vm_setup_cpu_cx(vm); init_cx_port(vm); } /* This function is for power management Sx state implementation, * VM need to load the Sx state data to implement S3/S5. */ static int32_t vm_load_pm_s_state(struct acrn_vm *vm) { int32_t ret; struct pm_s_state_data *sx_data = get_host_sstate_data(); if ((sx_data->pm1a_evt.address == 0UL) || (sx_data->pm1a_cnt.address == 0UL) || (sx_data->wake_vector_32 == NULL)) { pr_err("System S3/S5 is NOT supported."); ret = -1; } else { pr_info("System S3/S5 is supported."); vm->pm.sx_state_data = sx_data; ret = 0; } return ret; } static inline bool is_s3_enabled(uint32_t pm1_cnt) { return ((pm1_cnt & (1U << BIT_SLP_EN)) != 0U); } static inline uint8_t get_slp_typx(uint32_t pm1_cnt) { return (uint8_t)((pm1_cnt & 0x1fffU) >> BIT_SLP_TYPx); } static bool pm1ab_io_read(struct acrn_vcpu *vcpu, uint16_t addr, size_t width) { struct pio_request *pio_req = &vcpu->req.reqs.pio; pio_req->value = pio_read(addr, width); return true; } static inline void enter_s5(struct acrn_vcpu *vcpu, uint32_t pm1a_cnt_val, uint32_t pm1b_cnt_val) { struct acrn_vm *vm = vcpu->vm; uint16_t pcpu_id = pcpuid_from_vcpu(vcpu); get_vm_lock(vm); /* * Currently, we assume SOS has full ACPI power management stack. * That means the value from SOS should be saved and used to shut * down the system. */ if (is_sos_vm(vm)) { save_s5_reg_val(pm1a_cnt_val, pm1b_cnt_val); } pause_vm(vm); put_vm_lock(vm); bitmap_set_nolock(vm->vm_id, &per_cpu(shutdown_vm_bitmap, pcpu_id)); make_shutdown_vm_request(pcpu_id); } static inline void enter_s3(struct acrn_vm *vm, uint32_t pm1a_cnt_val, uint32_t pm1b_cnt_val) { uint32_t guest_wakeup_vec32; get_vm_lock(vm); /* Save the wakeup vec set by guest OS. Will return to guest * with this wakeup vec as entry. */ stac(); guest_wakeup_vec32 = *(vm->pm.sx_state_data->wake_vector_32); clac(); pause_vm(vm); /* pause sos_vm before suspend system */ host_enter_s3(vm->pm.sx_state_data, pm1a_cnt_val, pm1b_cnt_val); resume_vm_from_s3(vm, guest_wakeup_vec32); /* jump back to vm */ put_vm_lock(vm); } /** * @pre vcpu != NULL * @pre vcpu->vm != NULL */ static bool pm1ab_io_write(struct acrn_vcpu *vcpu, uint16_t addr, size_t width, uint32_t v) { static uint32_t pm1a_cnt_ready = 0U; uint32_t pm1a_cnt_val; bool to_write = true; struct acrn_vm *vm = vcpu->vm; if (width == 2U) { uint8_t val = get_slp_typx(v); if ((addr == vm->pm.sx_state_data->pm1a_cnt.address) && is_s3_enabled(v)) { if (vm->pm.sx_state_data->pm1b_cnt.address != 0UL) { pm1a_cnt_ready = v; } else { if (vm->pm.sx_state_data->s3_pkg.val_pm1a == val) { enter_s3(vm, v, 0U); } else if (vm->pm.sx_state_data->s5_pkg.val_pm1a == val) { enter_s5(vcpu, v, 0U); } } to_write = false; } else if ((addr == vm->pm.sx_state_data->pm1b_cnt.address) && is_s3_enabled(v)) { if (pm1a_cnt_ready != 0U) { pm1a_cnt_val = pm1a_cnt_ready; pm1a_cnt_ready = 0U; if (vm->pm.sx_state_data->s3_pkg.val_pm1b == val) { enter_s3(vm, pm1a_cnt_val, v); } else if (vm->pm.sx_state_data->s5_pkg.val_pm1b == val) { enter_s5(vcpu, pm1a_cnt_val, v); } } else { /* the case broke ACPI spec */ pr_err("PM1B_CNT write error!"); } to_write = false; } else { /* No other state currently, do nothing */ } } if (to_write) { pio_write(v, addr, width); } return true; } static void register_gas_io_handler(struct acrn_vm *vm, uint32_t pio_idx, const struct acpi_generic_address *gas) { uint8_t io_len[5] = {0U, 1U, 2U, 4U, 8U}; struct vm_io_range gas_io; if ((gas->address != 0UL) && (gas->space_id == SPACE_SYSTEM_IO) && (gas->access_size != 0U) && (gas->access_size <= 4U)) { gas_io.base = (uint16_t)gas->address; gas_io.len = io_len[gas->access_size]; register_pio_emulation_handler(vm, pio_idx, &gas_io, &pm1ab_io_read, &pm1ab_io_write); pr_dbg("Enable PM1A trap for VM %d, port 0x%x, size %d\n", vm->vm_id, gas_io.base, gas_io.len); } } static void register_pm1ab_handler(struct acrn_vm *vm) { struct pm_s_state_data *sx_data = vm->pm.sx_state_data; register_gas_io_handler(vm, PM1A_EVT_PIO_IDX, &(sx_data->pm1a_evt)); register_gas_io_handler(vm, PM1B_EVT_PIO_IDX, &(sx_data->pm1b_evt)); register_gas_io_handler(vm, PM1A_CNT_PIO_IDX, &(sx_data->pm1a_cnt)); register_gas_io_handler(vm, PM1B_CNT_PIO_IDX, &(sx_data->pm1b_cnt)); } static bool rt_vm_pm1a_io_read(__unused struct acrn_vcpu *vcpu, __unused uint16_t addr, __unused size_t width) { return false; } /* * retval true means that we complete the emulation in HV and no need to re-inject the request to DM. * retval false means that we should re-inject the request to DM. */ /** * @pre vcpu != NULL * @pre vcpu->vm != NULL */ static bool rt_vm_pm1a_io_write(struct acrn_vcpu *vcpu, uint16_t addr, size_t width, uint32_t v) { if (width != 2U) { pr_dbg("Invalid address (0x%x) or width (0x%x)", addr, width); } else { if ((((v & VIRTUAL_PM1A_SLP_EN) != 0U) && (((v & VIRTUAL_PM1A_SLP_TYP) >> 10U) == 5U)) != 0U) { poweroff_if_rt_vm(vcpu->vm); } } return false; } static void register_rt_vm_pm1a_ctl_handler(struct acrn_vm *vm) { struct vm_io_range io_range; io_range.base = VIRTUAL_PM1A_CNT_ADDR; io_range.len = 1U; register_pio_emulation_handler(vm, VIRTUAL_PM1A_CNT_PIO_IDX, &io_range, &rt_vm_pm1a_io_read, &rt_vm_pm1a_io_write); } /* * @pre vcpu != NULL */ static bool prelaunched_vm_sleep_io_read(struct acrn_vcpu *vcpu, __unused uint16_t addr, __unused size_t width) { vcpu->req.reqs.pio.value = 0U; return true; } /* * @pre vcpu != NULL * @pre vcpu->vm != NULL */ static bool prelaunched_vm_sleep_io_write(struct acrn_vcpu *vcpu, uint16_t addr, size_t width, uint32_t v) { if ((width == 1U) && (addr == VIRTUAL_SLEEP_CTL_ADDR)) { bool slp_en; uint32_t slp_type; struct acrn_vm *vm = vcpu->vm; /* ACPI sleep control register: * * Bits 2~4: SLP_TYPx, defines the type of sleeping state the system enters when the * SLP_EN bit is set to one. This 3-bit field defines the type of hardware sleep state * the system enters when the SLP_EN bit is set. The \_S5 object contains 3-bit binary * value (0x5) associated with the S5 sleeping state * * Bit 5: SLP_EN, This is a write-only bit and reads to it always return a zero. Setting * this bit causes the system to sequence into the sleeping state associated with the * SLP_TYPx fields programmed with the values from the \_S5 object */ slp_type = (v >> 2U) & 0x7U; slp_en = (v >> 5U) & 0x1U; if (slp_en && (slp_type == 5U)) { get_vm_lock(vm); poweroff_if_rt_vm(vm); pause_vm(vm); put_vm_lock(vm); bitmap_set_nolock(vm->vm_id, &per_cpu(shutdown_vm_bitmap, pcpuid_from_vcpu(vcpu))); make_shutdown_vm_request(pcpuid_from_vcpu(vcpu)); } } return true; } static void register_prelaunched_vm_sleep_handler(struct acrn_vm *vm) { struct vm_io_range io_range; /* ACPI reduced HW mode is used for pre-launched VM * * The optional ACPI sleep registers (SLEEP_CONTROL_REG and SLEEP_STATUS_REG) specify * a standard mechanism for system sleep state entry on HW-Reduced ACPI systems. When * implemented, the Sleep registers are a replacement for the SLP_TYP, SLP_EN and WAK_STS * registers in the PM1_BLK. */ io_range.base = VIRTUAL_SLEEP_CTL_ADDR; io_range.len = 2U; register_pio_emulation_handler(vm, SLEEP_CTL_PIO_IDX, &io_range, &prelaunched_vm_sleep_io_read, &prelaunched_vm_sleep_io_write); } void init_guest_pm(struct acrn_vm *vm) { struct pm_s_state_data *sx_data = get_host_sstate_data(); /* * In enter_s5(), it will call save_s5_reg_val() to initialize system_pm1a_cnt_val/system_pm1b_cnt_val when the * vm is SOS. * If there is no SOS, save_s5_reg_val() will not be called and these 2 variables will not be initialized properly * so shutdown_system() will fail, explicitly init here to avoid this */ save_s5_reg_val((sx_data->s5_pkg.val_pm1a << BIT_SLP_TYPx) | (1U << BIT_SLP_EN), (sx_data->s5_pkg.val_pm1b << BIT_SLP_TYPx) | (1U << BIT_SLP_EN)); vm_setup_cpu_state(vm); if (is_sos_vm(vm)) { /* Load pm S state data */ if (vm_load_pm_s_state(vm) == 0) { register_pm1ab_handler(vm); } } else if (is_postlaunched_vm(vm) && is_rt_vm(vm)) { /* Intercept the virtual pm port for post launched RTVM */ register_rt_vm_pm1a_ctl_handler(vm); } else if (is_prelaunched_vm(vm)) { /* Intercept the virtual sleep control/status registers for pre-launched VM */ register_prelaunched_vm_sleep_handler(vm); } }