/*- * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include "vmmapi.h" #include "mevent.h" #include "dm.h" #include "pci_core.h" #include "log.h" #define MAP_NOCORE 0 #define MAP_ALIGNED_SUPER 0 /* * Size of the guard region before and after the virtual address space * mapping the guest physical memory. This must be a multiple of the * superpage size for performance reasons. */ #define VM_MMAP_GUARD_SIZE (4 * MB) #define SUPPORT_VHM_API_VERSION_MAJOR 1 #define SUPPORT_VHM_API_VERSION_MINOR 0 #define VM_STATE_STR_LEN 16 static const char vm_state_str[VM_SUSPEND_LAST][VM_STATE_STR_LEN] = { [VM_SUSPEND_NONE] = "RUNNING", [VM_SUSPEND_SYSTEM_RESET] = "SYSTEM_RESET", [VM_SUSPEND_FULL_RESET] = "FULL_RESET", [VM_SUSPEND_POWEROFF] = "POWEROFF", [VM_SUSPEND_SUSPEND] = "SUSPEND", [VM_SUSPEND_HALT] = "HALT", [VM_SUSPEND_TRIPLEFAULT] = "TRIPLEFAULT" }; const char *vm_state_to_str(enum vm_suspend_how idx) { return (idx < VM_SUSPEND_LAST) ? vm_state_str[idx] : "UNKNOWN"; } static int check_api(int fd) { struct api_version api_version; int error; error = ioctl(fd, IC_GET_API_VERSION, &api_version); if (error) { pr_err("failed to get vhm api version\n"); return -1; } if (api_version.major_version != SUPPORT_VHM_API_VERSION_MAJOR || api_version.minor_version != SUPPORT_VHM_API_VERSION_MINOR) { pr_err("not support vhm api version\n"); return -1; } pr_info("VHM api version %d.%d\n", api_version.major_version, api_version.minor_version); return 0; } static int devfd = -1; static uint64_t cpu_affinity_bitmap = 0UL; static void add_one_pcpu(int pcpu_id) { if (cpu_affinity_bitmap & (1UL << pcpu_id)) { pr_err("%s: pcpu_id %d has been allocated to this VM.\n", __func__, pcpu_id); return; } cpu_affinity_bitmap |= (1UL << pcpu_id); } /* * example options: * --cpu_affinity 1,2,3 * --cpu_affinity 1-3 * --cpu_affinity 1,3,4-6 * --cpu_affinity 1,3,4-6,9 */ int acrn_parse_cpu_affinity(char *opt) { char *str, *cp; int pcpu_id; int pcpu_start, pcpu_end; cp = strdup(opt); if (!cp) { pr_err("%s: strdup returns NULL\n", __func__); return -1; } /* white spaces within the commane line are invalid */ while (cp && isdigit(cp[0])) { str = strpbrk(cp, ",-"); /* no more entries delimited by ',' or '-' */ if (!str) { if (!dm_strtoi(cp, NULL, 10, &pcpu_id)) { add_one_pcpu(pcpu_id); } break; } else { if (*str == ',') { /* after this, 'cp' points to the character after ',' */ str = strsep(&cp, ","); /* parse the entry before ',' */ if (dm_strtoi(str, NULL, 10, &pcpu_id)) { return -1; } add_one_pcpu(pcpu_id); } if (*str == '-') { str = strsep(&cp, "-"); /* parse the entry before and after '-' respectively */ if (dm_strtoi(str, NULL, 10, &pcpu_start) || dm_strtoi(cp, NULL, 10, &pcpu_end)) { return -1; } if (pcpu_end <= pcpu_start) { return -1; } for (; pcpu_start <= pcpu_end; pcpu_start++) { add_one_pcpu(pcpu_start); } /* skip the ',' after pcpu_end */ str = strsep(&cp, ","); } } } return 0; } struct vmctx * vm_create(const char *name, uint64_t req_buf, int *vcpu_num) { struct vmctx *ctx; struct acrn_create_vm create_vm; int error, retry = 10; uuid_t vm_uuid; struct stat tmp_st; memset(&create_vm, 0, sizeof(struct acrn_create_vm)); ctx = calloc(1, sizeof(struct vmctx) + strnlen(name, PATH_MAX) + 1); if ((ctx == NULL) || (devfd != -1)) goto err; if (stat("/dev/acrn_vhm", &tmp_st) == 0) { devfd = open("/dev/acrn_vhm", O_RDWR|O_CLOEXEC); } else if (stat("/dev/acrn_hsm", &tmp_st) == 0) { devfd = open("/dev/acrn_hsm", O_RDWR|O_CLOEXEC); } else { devfd = -1; } if (devfd == -1) { pr_err("Could not open /dev/acrn_vhm\n"); goto err; } if (check_api(devfd) < 0) goto err; if (guest_uuid_str == NULL) guest_uuid_str = "d2795438-25d6-11e8-864e-cb7a18b34643"; error = uuid_parse(guest_uuid_str, vm_uuid); if (error != 0) goto err; /* save vm uuid to ctx */ uuid_copy(ctx->vm_uuid, vm_uuid); /* Pass uuid as parameter of create vm*/ uuid_copy(create_vm.uuid, vm_uuid); ctx->gvt_enabled = false; ctx->fd = devfd; ctx->lowmem_limit = 2 * GB; ctx->highmem_gpa_base = PCI_EMUL_MEMLIMIT64; ctx->name = (char *)(ctx + 1); strncpy(ctx->name, name, strnlen(name, PATH_MAX) + 1); /* Set trusty enable flag */ if (trusty_enabled) create_vm.vm_flag |= GUEST_FLAG_SECURE_WORLD_ENABLED; else create_vm.vm_flag &= (~GUEST_FLAG_SECURE_WORLD_ENABLED); if (lapic_pt) { create_vm.vm_flag |= GUEST_FLAG_LAPIC_PASSTHROUGH; create_vm.vm_flag |= GUEST_FLAG_RT; create_vm.vm_flag |= GUEST_FLAG_IO_COMPLETION_POLLING; } else { create_vm.vm_flag &= (~GUEST_FLAG_LAPIC_PASSTHROUGH); create_vm.vm_flag &= (~GUEST_FLAG_IO_COMPLETION_POLLING); } /* command line arguments specified CPU affinity could overwrite HV's static configuration */ create_vm.cpu_affinity = cpu_affinity_bitmap; if (is_rtvm) { create_vm.vm_flag |= GUEST_FLAG_RT; create_vm.vm_flag |= GUEST_FLAG_IO_COMPLETION_POLLING; } create_vm.req_buf = req_buf; while (retry > 0) { error = ioctl(ctx->fd, IC_CREATE_VM, &create_vm); if (error == 0) break; usleep(500000); retry--; } if (error) { pr_err("failed to create VM %s\n", ctx->name); goto err; } *vcpu_num = create_vm.vcpu_num; ctx->vmid = create_vm.vmid; return ctx; err: if (ctx != NULL) free(ctx); return NULL; } int vm_create_ioreq_client(struct vmctx *ctx) { return ioctl(ctx->fd, IC_CREATE_IOREQ_CLIENT, 0); } int vm_destroy_ioreq_client(struct vmctx *ctx) { return ioctl(ctx->fd, IC_DESTROY_IOREQ_CLIENT, ctx->ioreq_client); } int vm_attach_ioreq_client(struct vmctx *ctx) { int error; error = ioctl(ctx->fd, IC_ATTACH_IOREQ_CLIENT, ctx->ioreq_client); if (error) { pr_err("attach ioreq client return %d " "(1 = destroying, could be triggered by Power State " "change, others = error)\n", error); return error; } return 0; } int vm_notify_request_done(struct vmctx *ctx, int vcpu) { int error; struct ioreq_notify notify; bzero(¬ify, sizeof(notify)); notify.client_id = ctx->ioreq_client; notify.vcpu = vcpu; error = ioctl(ctx->fd, IC_NOTIFY_REQUEST_FINISH, ¬ify); if (error) { pr_err("failed: notify request finish\n"); return -1; } return 0; } void vm_destroy(struct vmctx *ctx) { if (!ctx) return; ioctl(ctx->fd, IC_DESTROY_VM, NULL); close(ctx->fd); free(ctx); devfd = -1; } int vm_parse_memsize(const char *optarg, size_t *ret_memsize) { char *endptr; size_t optval; int shift; optval = strtoul(optarg, &endptr, 0); switch (tolower((unsigned char)*endptr)) { case 'g': shift = 30; break; case 'm': shift = 20; break; case 'k': shift = 10; break; case 'b': case '\0': /* No unit. */ shift = 0; default: /* Unrecognized unit. */ return -1; } optval = optval << shift; if (optval < 128 * MB) return -1; *ret_memsize = optval; return 0; } uint32_t vm_get_lowmem_limit(struct vmctx *ctx) { return ctx->lowmem_limit; } int vm_map_memseg_vma(struct vmctx *ctx, size_t len, vm_paddr_t gpa, uint64_t vma, int prot) { struct vm_memmap memmap; bzero(&memmap, sizeof(struct vm_memmap)); memmap.type = VM_MEMMAP_SYSMEM; memmap.using_vma = 1; memmap.vma_base = vma; memmap.len = len; memmap.gpa = gpa; memmap.prot = prot; return ioctl(ctx->fd, IC_SET_MEMSEG, &memmap); } int vm_setup_memory(struct vmctx *ctx, size_t memsize) { /* * If 'memsize' cannot fit entirely in the 'lowmem' segment then * create another 'highmem' segment above 4GB for the remainder. */ if (memsize > ctx->lowmem_limit) { ctx->lowmem = ctx->lowmem_limit; ctx->highmem = memsize - ctx->lowmem_limit; } else { ctx->lowmem = memsize; ctx->highmem = 0; } ctx->biosmem = high_bios_size(); return hugetlb_setup_memory(ctx); } void vm_unsetup_memory(struct vmctx *ctx) { /* * For security reason, clean the VM's memory region * to avoid secret information leaking in below case: * After a UOS is destroyed, the memory will be reclaimed, * then if the new UOS starts, that memory region may be * allocated the new UOS, the previous UOS sensitive data * may be leaked to the new UOS if the memory is not cleared. * * For rtvm, we can't clean VM's memory as RTVM may still * run. But we need to return the memory to SOS here. * Otherwise, VM can't be restart again. */ if (!is_rtvm) { bzero((void *)ctx->baseaddr, ctx->lowmem); if (ctx->highmem > 0) { bzero((void *)(ctx->baseaddr + ctx->highmem_gpa_base), ctx->highmem); } } hugetlb_unsetup_memory(ctx); } /* * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in * the lowmem or highmem regions. * * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. * The instruction emulation code depends on this behavior. */ void * vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) { if (ctx->lowmem > 0) { if (gaddr < ctx->lowmem && len <= ctx->lowmem && gaddr + len <= ctx->lowmem) return (ctx->baseaddr + gaddr); } if (ctx->highmem > 0) { if (gaddr >= ctx->highmem_gpa_base) { if (gaddr < ctx->highmem_gpa_base + ctx->highmem && len <= ctx->highmem && gaddr + len <= ctx->highmem_gpa_base + ctx->highmem) return (ctx->baseaddr + gaddr); } } return NULL; } size_t vm_get_lowmem_size(struct vmctx *ctx) { return ctx->lowmem; } size_t vm_get_highmem_size(struct vmctx *ctx) { return ctx->highmem; } int vm_run(struct vmctx *ctx) { int error; error = ioctl(ctx->fd, IC_START_VM, &ctx->vmid); return error; } void vm_pause(struct vmctx *ctx) { ioctl(ctx->fd, IC_PAUSE_VM, &ctx->vmid); } void vm_reset(struct vmctx *ctx) { ioctl(ctx->fd, IC_RESET_VM, &ctx->vmid); } void vm_clear_ioreq(struct vmctx *ctx) { ioctl(ctx->fd, IC_CLEAR_VM_IOREQ, NULL); } static enum vm_suspend_how suspend_mode = VM_SUSPEND_NONE; void vm_set_suspend_mode(enum vm_suspend_how how) { pr_notice("VM state changed from[ %s ] to [ %s ]\n", vm_state_to_str(suspend_mode), vm_state_to_str(how)); suspend_mode = how; } int vm_get_suspend_mode(void) { return suspend_mode; } int vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) { pr_info("%s: setting VM state to %s\n", __func__, vm_state_to_str(how)); vm_set_suspend_mode(how); mevent_notify(); return 0; } int vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) { struct acrn_msi_entry msi; bzero(&msi, sizeof(msi)); msi.msi_addr = addr; msi.msi_data = msg; return ioctl(ctx->fd, IC_INJECT_MSI, &msi); } int vm_set_gsi_irq(struct vmctx *ctx, int gsi, uint32_t operation) { struct acrn_irqline_ops op; uint64_t *req = (uint64_t *)&op; op.op = operation; op.gsi = (uint32_t)gsi; return ioctl(ctx->fd, IC_SET_IRQLINE, *req); } int vm_assign_pcidev(struct vmctx *ctx, struct acrn_assign_pcidev *pcidev) { return ioctl(ctx->fd, IC_ASSIGN_PCIDEV, pcidev); } int vm_deassign_pcidev(struct vmctx *ctx, struct acrn_assign_pcidev *pcidev) { return ioctl(ctx->fd, IC_DEASSIGN_PCIDEV, pcidev); } int vm_assign_mmiodev(struct vmctx *ctx, struct acrn_mmiodev *mmiodev) { return ioctl(ctx->fd, IC_ASSIGN_MMIODEV, mmiodev); } int vm_deassign_mmiodev(struct vmctx *ctx, struct acrn_mmiodev *mmiodev) { return ioctl(ctx->fd, IC_DEASSIGN_MMIODEV, mmiodev); } int vm_map_ptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) { struct vm_memmap memmap; bzero(&memmap, sizeof(struct vm_memmap)); memmap.type = VM_MMIO; memmap.len = len; memmap.gpa = gpa; memmap.hpa = hpa; memmap.prot = PROT_ALL; return ioctl(ctx->fd, IC_SET_MEMSEG, &memmap); } int vm_unmap_ptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) { struct vm_memmap memmap; bzero(&memmap, sizeof(struct vm_memmap)); memmap.type = VM_MMIO; memmap.len = len; memmap.gpa = gpa; memmap.hpa = hpa; memmap.prot = PROT_ALL; return ioctl(ctx->fd, IC_UNSET_MEMSEG, &memmap); } int vm_set_ptdev_intx_info(struct vmctx *ctx, uint16_t virt_bdf, uint16_t phys_bdf, int virt_pin, int phys_pin, bool pic_pin) { struct ic_ptdev_irq ptirq; bzero(&ptirq, sizeof(ptirq)); ptirq.type = IRQ_INTX; ptirq.virt_bdf = virt_bdf; ptirq.phys_bdf = phys_bdf; ptirq.intx.virt_pin = virt_pin; ptirq.intx.phys_pin = phys_pin; ptirq.intx.is_pic_pin = pic_pin; return ioctl(ctx->fd, IC_SET_PTDEV_INTR_INFO, &ptirq); } int vm_reset_ptdev_intx_info(struct vmctx *ctx, uint16_t virt_bdf, uint16_t phys_bdf, int virt_pin, bool pic_pin) { struct ic_ptdev_irq ptirq; bzero(&ptirq, sizeof(ptirq)); ptirq.type = IRQ_INTX; ptirq.intx.virt_pin = virt_pin; ptirq.intx.is_pic_pin = pic_pin; ptirq.virt_bdf = virt_bdf; ptirq.phys_bdf = phys_bdf; return ioctl(ctx->fd, IC_RESET_PTDEV_INTR_INFO, &ptirq); } int vm_create_vcpu(struct vmctx *ctx, uint16_t vcpu_id) { struct acrn_create_vcpu cv; int error; bzero(&cv, sizeof(struct acrn_create_vcpu)); cv.vcpu_id = vcpu_id; error = ioctl(ctx->fd, IC_CREATE_VCPU, &cv); return error; } int vm_set_vcpu_regs(struct vmctx *ctx, struct acrn_set_vcpu_regs *vcpu_regs) { return ioctl(ctx->fd, IC_SET_VCPU_REGS, vcpu_regs); } int vm_get_cpu_state(struct vmctx *ctx, void *state_buf) { return ioctl(ctx->fd, IC_PM_GET_CPU_STATE, state_buf); } int vm_intr_monitor(struct vmctx *ctx, void *intr_buf) { return ioctl(ctx->fd, IC_VM_INTR_MONITOR, intr_buf); } int vm_ioeventfd(struct vmctx *ctx, struct acrn_ioeventfd *args) { return ioctl(ctx->fd, IC_EVENT_IOEVENTFD, args); } int vm_irqfd(struct vmctx *ctx, struct acrn_irqfd *args) { return ioctl(ctx->fd, IC_EVENT_IRQFD, args); }