/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include /* * e820.c contains the related e820 operations; like HV to get memory info for its MMU setup; * and hide HV memory from SOS_VM... */ static uint32_t hv_e820_entries_nr; /* Describe the memory layout the hypervisor uses */ static struct e820_entry hv_e820[E820_MAX_ENTRIES]; /* Describe the top/bottom/size of the physical memory the hypervisor manages */ static struct mem_range hv_mem_range; #define ACRN_DBG_E820 6U static void obtain_mem_range_info(void) { uint32_t i; struct e820_entry *entry; hv_mem_range.mem_bottom = UINT64_MAX; hv_mem_range.mem_top = 0x0UL; hv_mem_range.total_mem_size = 0UL; for (i = 0U; i < hv_e820_entries_nr; i++) { entry = &hv_e820[i]; if (hv_mem_range.mem_bottom > entry->baseaddr) { hv_mem_range.mem_bottom = entry->baseaddr; } if ((entry->baseaddr + entry->length) > hv_mem_range.mem_top) { hv_mem_range.mem_top = entry->baseaddr + entry->length; } if (entry->type == E820_TYPE_RAM) { hv_mem_range.total_mem_size += entry->length; } } } /* get some RAM below 1MB in e820 entries, hide it from sos_vm, return its start address */ uint64_t e820_alloc_low_memory(uint32_t size_arg) { uint32_t i; uint32_t size = size_arg; uint64_t ret = ACRN_INVALID_HPA; struct e820_entry *entry, *new_entry; /* We want memory in page boundary and integral multiple of pages */ size = (((size + PAGE_SIZE) - 1U) >> PAGE_SHIFT) << PAGE_SHIFT; for (i = 0U; i < hv_e820_entries_nr; i++) { entry = &hv_e820[i]; uint64_t start, end, length; start = round_page_up(entry->baseaddr); end = round_page_down(entry->baseaddr + entry->length); length = end - start; length = (end > start) ? (end - start) : 0; /* Search for available low memory */ if ((entry->type != E820_TYPE_RAM) || (length < size) || ((start + size) > MEM_1M)) { continue; } /* found exact size of e820 entry */ if (length == size) { entry->type = E820_TYPE_RESERVED; hv_mem_range.total_mem_size -= size; ret = start; break; } /* * found entry with available memory larger than requested * allocate memory from the end of this entry at page boundary */ new_entry = &hv_e820[hv_e820_entries_nr]; new_entry->type = E820_TYPE_RESERVED; new_entry->baseaddr = end - size; new_entry->length = (entry->baseaddr + entry->length) - new_entry->baseaddr; /* Shrink the existing entry and total available memory */ entry->length -= new_entry->length; hv_mem_range.total_mem_size -= new_entry->length; hv_e820_entries_nr++; ret = new_entry->baseaddr; break; } if (ret == ACRN_INVALID_HPA) { pr_fatal("Can't allocate memory under 1M from E820\n"); } return ret; } /* HV read multiboot header to get e820 entries info and calc total RAM info */ void init_e820(void) { uint32_t i; uint64_t top_addr_space = CONFIG_PLATFORM_RAM_SIZE + PLATFORM_LO_MMIO_SIZE; if (boot_regs[0] == MULTIBOOT_INFO_MAGIC) { /* * Before installing new PML4 table in enable_paging(), HPA->HVA is always 1:1 mapping * and hpa2hva() can't be used to do the conversion. Here we simply treat boot_reg[1] as HPA. */ uint64_t hpa = (uint64_t)boot_regs[1]; struct multiboot_info *mbi = (struct multiboot_info *)hpa; pr_info("Multiboot info detected\n"); if ((mbi->mi_flags & MULTIBOOT_INFO_HAS_MMAP) != 0U) { /* HPA->HVA is always 1:1 mapping at this moment */ hpa = (uint64_t)mbi->mi_mmap_addr; struct multiboot_mmap *mmap = (struct multiboot_mmap *)hpa; hv_e820_entries_nr = mbi->mi_mmap_length / sizeof(struct multiboot_mmap); if (hv_e820_entries_nr > E820_MAX_ENTRIES) { pr_err("Too many E820 entries %d\n", hv_e820_entries_nr); hv_e820_entries_nr = E820_MAX_ENTRIES; } dev_dbg(ACRN_DBG_E820, "mmap length 0x%x addr 0x%x entries %d\n", mbi->mi_mmap_length, mbi->mi_mmap_addr, hv_e820_entries_nr); for (i = 0U; i < hv_e820_entries_nr; i++) { if (mmap[i].baseaddr >= top_addr_space) { mmap[i].length = 0UL; } else { if ((mmap[i].baseaddr + mmap[i].length) > top_addr_space) { mmap[i].length = top_addr_space - mmap[i].baseaddr; } } hv_e820[i].baseaddr = mmap[i].baseaddr; hv_e820[i].length = mmap[i].length; hv_e820[i].type = mmap[i].type; dev_dbg(ACRN_DBG_E820, "mmap table: %d type: 0x%x\n", i, mmap[i].type); dev_dbg(ACRN_DBG_E820, "Base: 0x%016llx length: 0x%016llx", mmap[i].baseaddr, mmap[i].length); } } obtain_mem_range_info(); } else { panic("no multiboot info found"); } } uint32_t get_e820_entries_count(void) { return hv_e820_entries_nr; } const struct e820_entry *get_e820_entry(void) { return hv_e820; } const struct mem_range *get_mem_range_info(void) { return &hv_mem_range; }