/* * Copyright (c) 1997, Stefan Esser * Copyright (c) 2000, Michael Smith * Copyright (c) 2011 NetApp, Inc. * Copyright (c) 2018 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include static spinlock_t pci_device_lock; static uint32_t num_pci_pdev; static struct pci_pdev pci_pdev_array[CONFIG_MAX_PCI_DEV_NUM]; static void init_pdev(uint16_t pbdf); static uint32_t pci_pdev_calc_address(union pci_bdf bdf, uint32_t offset) { uint32_t addr = (uint32_t)bdf.value; addr <<= 8U; addr |= (offset | PCI_CFG_ENABLE); return addr; } uint32_t pci_pdev_read_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes) { uint32_t addr; uint32_t val; addr = pci_pdev_calc_address(bdf, offset); spinlock_obtain(&pci_device_lock); /* Write address to ADDRESS register */ pio_write32(addr, (uint16_t)PCI_CONFIG_ADDR); /* Read result from DATA register */ switch (bytes) { case 1U: val = (uint32_t)pio_read8((uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 3U)); break; case 2U: val = (uint32_t)pio_read16((uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 2U)); break; default: val = pio_read32((uint16_t)PCI_CONFIG_DATA); break; } spinlock_release(&pci_device_lock); return val; } void pci_pdev_write_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes, uint32_t val) { uint32_t addr; spinlock_obtain(&pci_device_lock); addr = pci_pdev_calc_address(bdf, offset); /* Write address to ADDRESS register */ pio_write32(addr, (uint16_t)PCI_CONFIG_ADDR); /* Write value to DATA register */ switch (bytes) { case 1U: pio_write8((uint8_t)val, (uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 3U)); break; case 2U: pio_write16((uint16_t)val, (uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 2U)); break; default: pio_write32(val, (uint16_t)PCI_CONFIG_DATA); break; } spinlock_release(&pci_device_lock); } /* enable: 1: enable INTx; 0: Disable INTx */ void enable_disable_pci_intx(union pci_bdf bdf, bool enable) { uint32_t cmd, new_cmd; /* Set or clear the INTXDIS bit in COMMAND register */ cmd = pci_pdev_read_cfg(bdf, PCIR_COMMAND, 2U); if (enable) { new_cmd = cmd & ~PCIM_CMD_INTxDIS; } else { new_cmd = cmd | PCIM_CMD_INTxDIS; } if ((cmd ^ new_cmd) != 0U) { pci_pdev_write_cfg(bdf, PCIR_COMMAND, 0x2U, new_cmd); } } #define BUS_SCAN_SKIP 0U #define BUS_SCAN_PENDING 1U #define BUS_SCAN_COMPLETE 2U void init_pci_pdev_list(void) { union pci_bdf pbdf; uint8_t hdr_type, secondary_bus, dev, func; uint32_t bus, val; uint8_t bus_to_scan[PCI_BUSMAX + 1] = { BUS_SCAN_SKIP }; /* start from bus 0 */ bus_to_scan[0U] = BUS_SCAN_PENDING; for (bus = 0U; bus <= PCI_BUSMAX; bus++) { if (bus_to_scan[bus] != BUS_SCAN_PENDING) { continue; } bus_to_scan[bus] = BUS_SCAN_COMPLETE; pbdf.bits.b = (uint8_t)bus; for (dev = 0U; dev <= PCI_SLOTMAX; dev++) { pbdf.bits.d = dev; for (func = 0U; func <= PCI_FUNCMAX; func++) { pbdf.bits.f = func; val = pci_pdev_read_cfg(pbdf, PCIR_VENDOR, 4U); if ((val == 0xFFFFFFFFU) || (val == 0U) || (val == 0xFFFF0000U) || (val == 0xFFFFU)) { /* If function 0 is not implemented, skip to next device */ if (func == 0U) { break; } /* continue scan next function */ continue; } /* if it is debug uart, hide it from SOS */ if (is_pci_dbg_uart(pbdf)) { pr_info("hide pci uart dev: (%x:%x:%x)", pbdf.bits.b, pbdf.bits.d, pbdf.bits.f); continue; } init_pdev(pbdf.value); hdr_type = (uint8_t)pci_pdev_read_cfg(pbdf, PCIR_HDRTYPE, 1U); if ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) { /* Secondary bus to be scanned */ secondary_bus = (uint8_t)pci_pdev_read_cfg(pbdf, PCIR_SECBUS_1, 1U); if (bus_to_scan[secondary_bus] != BUS_SCAN_SKIP) { pr_err("%s, bus %d may be downstream of different PCI bridges", secondary_bus); } else { bus_to_scan[secondary_bus] = BUS_SCAN_PENDING; } } } } } } static uint8_t pci_pdev_get_num_bars(uint8_t hdr_type) { uint8_t num_bars = (uint8_t)0U; switch (hdr_type & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: num_bars = (uint8_t)6U; break; case PCIM_HDRTYPE_BRIDGE: num_bars = (uint8_t)2U; break; case PCIM_HDRTYPE_CARDBUS: num_bars = (uint8_t)1U; break; default: /*no actions are required for other cases.*/ break; } return num_bars; } static enum pci_bar_type pci_pdev_read_bar_type(union pci_bdf bdf, uint8_t idx) { uint32_t bar; enum pci_bar_type type = PCIBAR_NONE; bar = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U); if ((bar & PCIM_BAR_SPACE) == PCIM_BAR_IO_SPACE) { type = PCIBAR_IO_SPACE; } else { switch (bar & PCIM_BAR_MEM_TYPE) { case PCIM_BAR_MEM_32: case PCIM_BAR_MEM_1MB: type = PCIBAR_MEM32; break; case PCIM_BAR_MEM_64: type = PCIBAR_MEM64; break; default: /*no actions are required for other cases.*/ break; } } return type; } static uint8_t pci_pdev_read_bar(union pci_bdf bdf, uint8_t idx, struct pci_bar *bar) { uint64_t base, size; enum pci_bar_type type; uint32_t bar_lo, bar_hi, val32; uint32_t bar_base_mask; base = 0UL; size = 0UL; type = pci_pdev_read_bar_type(bdf, idx); bar_hi = 0U; if (type != PCIBAR_NONE) { if (type == PCIBAR_IO_SPACE) { bar_base_mask = ~0x03U; } else { bar_base_mask = ~0x0fU; } bar_lo = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U); /* Get the base address */ base = (uint64_t)bar_lo & bar_base_mask; if (type == PCIBAR_MEM64) { bar_hi = pci_pdev_read_cfg(bdf, pci_bar_offset(idx + 1U), 4U); base |= ((uint64_t)bar_hi << 32U); } if (base != 0UL) { /* Sizing the BAR */ if ((type == PCIBAR_MEM64) && (idx < (PCI_BAR_COUNT - 1U))) { pci_pdev_write_cfg(bdf, pci_bar_offset(idx + 1U), 4U, ~0U); size = (uint64_t)pci_pdev_read_cfg(bdf, pci_bar_offset(idx + 1U), 4U); size <<= 32U; } pci_pdev_write_cfg(bdf, pci_bar_offset(idx), 4U, ~0U); val32 = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U); size |= ((uint64_t)val32 & bar_base_mask); if (size != 0UL) { size = size & ~(size - 1U); } /* Restore the BAR */ pci_pdev_write_cfg(bdf, pci_bar_offset(idx), 4U, bar_lo); if (type == PCIBAR_MEM64) { pci_pdev_write_cfg(bdf, pci_bar_offset(idx + 1U), 4U, bar_hi); } } } bar->base = base; bar->size = size; bar->type = type; return (type == PCIBAR_MEM64)?2U:1U; } /* * @pre nr_bars <= PCI_BAR_COUNT */ static void pci_pdev_read_bars(union pci_bdf bdf, uint8_t nr_bars, struct pci_bar *bar) { uint8_t idx = 0U; while (idx < nr_bars) { idx += pci_pdev_read_bar(bdf, idx, &bar[idx]); } } static void pci_read_cap(struct pci_pdev *pdev) { uint8_t ptr, cap; uint32_t msgctrl; uint32_t len, offset, idx; uint32_t table_info; ptr = (uint8_t)pci_pdev_read_cfg(pdev->bdf, PCIR_CAP_PTR, 1U); while ((ptr != 0U) && (ptr != 0xFFU)) { cap = (uint8_t)pci_pdev_read_cfg(pdev->bdf, ptr + PCICAP_ID, 1U); /* Ignore all other Capability IDs for now */ if ((cap == PCIY_MSI) || (cap == PCIY_MSIX)) { offset = ptr; if (cap == PCIY_MSI) { pdev->msi.capoff = offset; msgctrl = pci_pdev_read_cfg(pdev->bdf, offset + PCIR_MSI_CTRL, 2U); len = ((msgctrl & PCIM_MSICTRL_64BIT) != 0U) ? 14U : 10U; pdev->msi.caplen = len; /* Copy MSI capability struct into buffer */ for (idx = 0U; idx < len; idx++) { pdev->msi.cap[idx] = (uint8_t)pci_pdev_read_cfg(pdev->bdf, offset + idx, 1U); } } else { pdev->msix.capoff = offset; pdev->msix.caplen = MSIX_CAPLEN; len = pdev->msix.caplen; msgctrl = pci_pdev_read_cfg(pdev->bdf, pdev->msix.capoff + PCIR_MSIX_CTRL, 2U); /* Read Table Offset and Table BIR */ table_info = pci_pdev_read_cfg(pdev->bdf, pdev->msix.capoff + PCIR_MSIX_TABLE, 4U); pdev->msix.table_bar = (uint8_t)(table_info & PCIM_MSIX_BIR_MASK); pdev->msix.table_offset = table_info & ~PCIM_MSIX_BIR_MASK; pdev->msix.table_count = (msgctrl & PCIM_MSIXCTRL_TABLE_SIZE) + 1U; /* Copy MSIX capability struct into buffer */ for (idx = 0U; idx < len; idx++) { pdev->msix.cap[idx] = (uint8_t)pci_pdev_read_cfg(pdev->bdf, offset + idx, 1U); } } } ptr = (uint8_t)pci_pdev_read_cfg(pdev->bdf, ptr + PCICAP_NEXTPTR, 1U); } } static void fill_pdev(uint16_t pbdf, struct pci_pdev *pdev) { uint8_t hdr_type; uint8_t nr_bars; pdev->bdf.value = pbdf; hdr_type = (uint8_t)pci_pdev_read_cfg(pdev->bdf, PCIR_HDRTYPE, 1U); nr_bars = pci_pdev_get_num_bars(hdr_type); pci_pdev_read_bars(pdev->bdf, nr_bars, &pdev->bar[0]); if ((pci_pdev_read_cfg(pdev->bdf, PCIR_STATUS, 2U) & PCIM_STATUS_CAPPRESENT) != 0U) { pci_read_cap(pdev); } } static void init_pdev(uint16_t pbdf) { if (num_pci_pdev < CONFIG_MAX_PCI_DEV_NUM) { fill_pdev(pbdf, &pci_pdev_array[num_pci_pdev]); num_pci_pdev++; } else { pr_err("%s, failed to alloc pci_pdev!\n", __func__); } } void pci_pdev_foreach(pci_pdev_enumeration_cb cb_func, const void *ctx) { uint32_t idx; for (idx = 0U; idx < num_pci_pdev; idx++) { if (cb_func != NULL) { cb_func(&pci_pdev_array[idx], ctx); } } } struct pci_pdev *find_pci_pdev(union pci_bdf pbdf) { struct pci_pdev *pdev = NULL; uint32_t i; for (i = 0U; i < num_pci_pdev; i++) { if (bdf_is_equal(&pci_pdev_array[i].bdf, &pbdf)) { pdev = &pci_pdev_array[i]; break; } } return pdev; }