/*- * Copyright (c) 2011 NetApp, Inc. * Copyright (c) 2017 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #define pr_prefix "vlapic: " #include #include "instr_emul_wrapper.h" #include "instr_emul.h" #include "vlapic_priv.h" #include "vlapic.h" #define VLAPIC_VERBOS 0 #define PRIO(x) ((x) >> 4) #define VLAPIC_VERSION (16U) #define APICBASE_RESERVED 0x000002ffU #define APICBASE_BSP 0x00000100U #define APICBASE_X2APIC 0x00000400U #define APICBASE_ENABLED 0x00000800U #define ACRN_DBG_LAPIC 6U #if VLAPIC_VERBOS static inline void vlapic_dump_irr(struct acrn_vlapic *vlapic, char *msg) { uint32_t i; struct lapic_reg *irrptr = &(vlapic)->apic_page->irr[0]; for (i = 0U; i < 8U; i++) dev_dbg(ACRN_DBG_LAPIC, "%s irr%u 0x%08x", msg, i, irrptr[i].val); } static inline void vlapic_dump_isr(struct acrn_vlapic *vlapic, char *msg) { uint32_t i; struct lapic_reg *isrptr = &(vlapic)->apic_page->isr[0]; for (i = 0U; i < 8U; i++) { dev_dbg(ACRN_DBG_LAPIC, "%s isr%u 0x%08x", msg, i, isrptr[0].val); } } #else #define vlapic_dump_irr(vlapic, msg) #define vlapic_dump_isr(vlapic, msg) #endif /*APIC-v APIC-access address */ static void *apicv_apic_access_addr; static int apicv_set_intr_ready(struct acrn_vlapic *vlapic, uint32_t vector, bool level); static int apicv_pending_intr(struct acrn_vlapic *vlapic, __unused uint32_t *vecptr); static void apicv_set_tmr(struct acrn_vlapic *vlapic, uint32_t vector, bool level); static void apicv_batch_set_tmr(struct acrn_vlapic *vlapic); /* * Post an interrupt to the vcpu running on 'hostcpu'. This will use a * hardware assist if available (e.g. Posted Interrupt) or fall back to * sending an 'ipinum' to interrupt the 'hostcpu'. */ static void vlapic_set_error(struct acrn_vlapic *vlapic, uint32_t mask); static int vlapic_timer_expired(void *data); static struct acrn_vlapic * vm_lapic_from_vcpu_id(struct vm *vm, uint16_t vcpu_id) { struct vcpu *vcpu; vcpu = vcpu_from_vid(vm, vcpu_id); ASSERT(vcpu != NULL, "vm%d, vcpu%hu", vm->attr.id, vcpu_id); return vcpu->arch_vcpu.vlapic; } struct acrn_vlapic * vm_lapic_from_pcpuid(struct vm *vm, uint16_t pcpu_id) { struct vcpu *vcpu; vcpu = vcpu_from_pid(vm, pcpu_id); ASSERT(vcpu != NULL, "vm%d, pcpu%hu", vm->attr.id, pcpu_id); return vcpu->arch_vcpu.vlapic; } static uint16_t vm_apicid2vcpu_id(struct vm *vm, uint8_t lapicid) { uint16_t i; struct vcpu *vcpu; foreach_vcpu(i, vm, vcpu) { struct acrn_vlapic *vlapic = vcpu->arch_vcpu.vlapic; if (vlapic_get_apicid(vlapic) == lapicid) { return vcpu->vcpu_id; } } pr_err("%s: bad lapicid %hhu", __func__, lapicid); return phys_cpu_num; } static uint64_t vm_active_cpus(struct vm *vm) { uint64_t dmask = 0UL; uint16_t i; struct vcpu *vcpu; foreach_vcpu(i, vm, vcpu) { bitmap_set_lock(vcpu->vcpu_id, &dmask); } return dmask; } uint32_t vlapic_get_id(struct acrn_vlapic *vlapic) { uint32_t id = vlapic->apic_page->id; return id; } uint8_t vlapic_get_apicid(struct acrn_vlapic *vlapic) { uint32_t apicid = vlapic->apic_page->id >> APIC_ID_SHIFT; return (uint8_t)apicid; } static inline uint32_t vlapic_build_id(struct acrn_vlapic *vlapic) { struct vcpu *vcpu = vlapic->vcpu; uint16_t id; if (is_vm0(vcpu->vm)) { /* Get APIC ID sequence format from cpu_storage */ id = per_cpu(lapic_id, vcpu->vcpu_id); } else { id = vcpu->vcpu_id; } dev_dbg(ACRN_DBG_LAPIC, "vlapic APIC PAGE ID : 0x%08x", (id << APIC_ID_SHIFT)); return (id << APIC_ID_SHIFT); } static void vlapic_dfr_write_handler(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic; lapic = vlapic->apic_page; lapic->dfr &= APIC_DFR_MODEL_MASK; lapic->dfr |= APIC_DFR_RESERVED; if ((lapic->dfr & APIC_DFR_MODEL_MASK) == APIC_DFR_MODEL_FLAT) { dev_dbg(ACRN_DBG_LAPIC, "vlapic DFR in Flat Model"); } else if ((lapic->dfr & APIC_DFR_MODEL_MASK) == APIC_DFR_MODEL_CLUSTER) { dev_dbg(ACRN_DBG_LAPIC, "vlapic DFR in Cluster Model"); } else { dev_dbg(ACRN_DBG_LAPIC, "DFR in Unknown Model %#x", lapic->dfr); } } static void vlapic_ldr_write_handler(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic; lapic = vlapic->apic_page; lapic->ldr &= ~APIC_LDR_RESERVED; dev_dbg(ACRN_DBG_LAPIC, "vlapic LDR set to %#x", lapic->ldr); } static void vlapic_id_write_handler(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic; /* * We don't allow the ID register to be modified so reset it back to * its default value. */ lapic = vlapic->apic_page; lapic->id = vlapic_get_id(vlapic); } static inline uint32_t vlapic_timer_divisor_shift(uint32_t dcr) { uint32_t val; val = ((dcr & 0x3U) | ((dcr & 0x8U) >> 1U)); return ((val + 1U) & 0x7U); } static inline bool vlapic_lvtt_oneshot(struct acrn_vlapic *vlapic) { return ((vlapic->apic_page->lvt[APIC_LVT_TIMER].val & APIC_LVTT_TM) == APIC_LVTT_TM_ONE_SHOT); } static inline bool vlapic_lvtt_period(struct acrn_vlapic *vlapic) { return ((vlapic->apic_page->lvt[APIC_LVT_TIMER].val & APIC_LVTT_TM) == APIC_LVTT_TM_PERIODIC); } static inline bool vlapic_lvtt_tsc_deadline(struct acrn_vlapic *vlapic) { return ((vlapic->apic_page->lvt[APIC_LVT_TIMER].val & APIC_LVTT_TM) == APIC_LVTT_TM_TSCDLT); } static inline bool vlapic_lvtt_masked(struct acrn_vlapic *vlapic) { return (vlapic->apic_page->lvt[APIC_LVT_TIMER].val & APIC_LVTT_M) != 0U; } static void vlapic_create_timer(struct acrn_vlapic *vlapic) { struct vlapic_timer *vtimer; if (vlapic == NULL) { return; } vtimer = &vlapic->vtimer; (void)memset(vtimer, 0U, sizeof(struct vlapic_timer)); initialize_timer(&vtimer->timer, vlapic_timer_expired, vlapic->vcpu, 0UL, 0, 0UL); } static void vlapic_reset_timer(struct acrn_vlapic *vlapic) { struct hv_timer *timer; if (vlapic == NULL) { return; } timer = &vlapic->vtimer.timer; del_timer(timer); timer->mode = 0; timer->fire_tsc = 0UL; timer->period_in_cycle = 0UL; } static bool set_expiration(struct acrn_vlapic *vlapic) { uint64_t now = rdtsc(); uint64_t delta; struct vlapic_timer *vtimer; struct hv_timer *timer; uint32_t tmicr, divisor_shift; vtimer = &vlapic->vtimer; tmicr = vtimer->tmicr; divisor_shift = vtimer->divisor_shift; if (!tmicr || divisor_shift > 8U) { return false; } delta = tmicr << divisor_shift; timer = &vtimer->timer; if (vlapic_lvtt_period(vlapic)) { timer->period_in_cycle = delta; } timer->fire_tsc = now + delta; return true; } static void vlapic_update_lvtt(struct acrn_vlapic *vlapic, uint32_t val) { uint32_t timer_mode = val & APIC_LVTT_TM; struct vlapic_timer *vtimer = &vlapic->vtimer; if (vtimer->mode != timer_mode) { struct hv_timer *timer = &vtimer->timer; /* * A write to the LVT Timer Register that changes * the timer mode disarms the local APIC timer. */ del_timer(timer); timer->mode = (timer_mode == APIC_LVTT_TM_PERIODIC) ? TICK_MODE_PERIODIC: TICK_MODE_ONESHOT; timer->fire_tsc = 0UL; timer->period_in_cycle = 0UL; vtimer->mode = timer_mode; } } static uint32_t vlapic_get_ccr(struct acrn_vlapic *vlapic) { uint64_t now = rdtsc(); uint32_t remain_count = 0U; struct vlapic_timer *vtimer; vtimer = &vlapic->vtimer; if (vtimer->tmicr && !vlapic_lvtt_tsc_deadline(vlapic)) { uint64_t fire_tsc = vtimer->timer.fire_tsc; if (now < fire_tsc) { uint32_t divisor_shift = vtimer->divisor_shift; uint64_t shifted_delta = (fire_tsc - now) >> divisor_shift; remain_count = (uint32_t)shifted_delta; } } return remain_count; } static void vlapic_dcr_write_handler(struct acrn_vlapic *vlapic) { uint32_t divisor_shift; struct vlapic_timer *vtimer; struct lapic_regs *lapic = vlapic->apic_page; vtimer = &vlapic->vtimer; divisor_shift = vlapic_timer_divisor_shift(lapic->dcr_timer); vtimer->divisor_shift = divisor_shift; } static void vlapic_icrtmr_write_handler(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic; struct vlapic_timer *vtimer; if (vlapic_lvtt_tsc_deadline(vlapic)) { return; } lapic = vlapic->apic_page; vtimer = &vlapic->vtimer; vtimer->tmicr = lapic->icr_timer; del_timer(&vtimer->timer); if (set_expiration(vlapic)) { add_timer(&vtimer->timer); } } static uint64_t vlapic_get_tsc_deadline_msr(struct acrn_vlapic *vlapic) { if (!vlapic_lvtt_tsc_deadline(vlapic)) { return 0; } return (vlapic->vtimer.timer.fire_tsc == 0UL) ? 0UL : vlapic->vcpu->guest_msrs[IDX_TSC_DEADLINE]; } static void vlapic_set_tsc_deadline_msr(struct acrn_vlapic *vlapic, uint64_t val_arg) { struct hv_timer *timer; uint64_t val = val_arg; if (!vlapic_lvtt_tsc_deadline(vlapic)) { return; } vlapic->vcpu->guest_msrs[IDX_TSC_DEADLINE] = val; timer = &vlapic->vtimer.timer; del_timer(timer); if (val != 0UL) { struct vcpu_arch *arch = &vlapic->vcpu->arch_vcpu; /* transfer guest tsc to host tsc */ val -= arch->contexts[arch->cur_context].tsc_offset; timer->fire_tsc = val; add_timer(timer); } else { timer->fire_tsc = 0UL; } } static void vlapic_esr_write_handler(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic; lapic = vlapic->apic_page; lapic->esr = vlapic->esr_pending; vlapic->esr_pending = 0U; } /* * Returns 1 if the vcpu needs to be notified of the interrupt and 0 otherwise. */ static int vlapic_set_intr_ready(struct acrn_vlapic *vlapic, uint32_t vector, bool level) { struct lapic_regs *lapic; struct lapic_reg *irrptr, *tmrptr; uint32_t mask; uint32_t idx; ASSERT(vector <= NR_MAX_VECTOR, "invalid vector %u", vector); lapic = vlapic->apic_page; if ((lapic->svr & APIC_SVR_ENABLE) == 0U) { dev_dbg(ACRN_DBG_LAPIC, "vlapic is software disabled, ignoring interrupt %u", vector); return 0; } if (vector < 16U) { vlapic_set_error(vlapic, APIC_ESR_RECEIVE_ILLEGAL_VECTOR); dev_dbg(ACRN_DBG_LAPIC, "vlapic ignoring interrupt to vector %u", vector); return 1; } if (vlapic->ops.apicv_set_intr_ready_fn != NULL) { return vlapic->ops.apicv_set_intr_ready_fn (vlapic, vector, level); } idx = vector / 32U; mask = 1U << (vector % 32U); irrptr = &lapic->irr[0]; /* If the interrupt is set, don't try to do it again */ if (bitmap32_test_and_set_lock((uint16_t)(vector % 32U), &irrptr[idx].val)) { return 0; } /* * Verify that the trigger-mode of the interrupt matches with * the vlapic TMR registers. */ tmrptr = &lapic->tmr[0]; if ((tmrptr[idx].val & mask) != (level ? mask : 0U)) { dev_dbg(ACRN_DBG_LAPIC, "vlapic TMR[%u] is 0x%08x but interrupt is %s-triggered", idx, tmrptr[idx].val, level ? "level" : "edge"); } vlapic_dump_irr(vlapic, "vlapic_set_intr_ready"); return 1; } static inline uint32_t lvt_off_to_idx(uint32_t offset) { uint32_t index = ~0U; switch (offset) { case APIC_OFFSET_CMCI_LVT: index = APIC_LVT_CMCI; break; case APIC_OFFSET_TIMER_LVT: index = APIC_LVT_TIMER; break; case APIC_OFFSET_THERM_LVT: index = APIC_LVT_THERMAL; break; case APIC_OFFSET_PERF_LVT: index = APIC_LVT_PMC; break; case APIC_OFFSET_LINT0_LVT: index = APIC_LVT_LINT0; break; case APIC_OFFSET_LINT1_LVT: index = APIC_LVT_LINT1; break; case APIC_OFFSET_ERROR_LVT: index = APIC_LVT_ERROR; break; default: break; } ASSERT(index <= VLAPIC_MAXLVT_INDEX, "%s: invalid lvt index %u for offset %#x", __func__, index, offset); return index; } static inline uint32_t * vlapic_get_lvtptr(struct acrn_vlapic *vlapic, uint32_t offset) { struct lapic_regs *lapic = vlapic->apic_page; uint32_t i; switch (offset) { case APIC_OFFSET_CMCI_LVT: return &lapic->lvt_cmci; case APIC_OFFSET_TIMER_LVT: case APIC_OFFSET_THERM_LVT: case APIC_OFFSET_PERF_LVT: case APIC_OFFSET_LINT0_LVT: case APIC_OFFSET_LINT1_LVT: case APIC_OFFSET_ERROR_LVT: i = lvt_off_to_idx(offset); return &(lapic->lvt[i].val); default: panic("vlapic_get_lvt: invalid LVT\n"); } } static inline uint32_t vlapic_get_lvt(struct acrn_vlapic *vlapic, uint32_t offset) { uint32_t idx, val; idx = lvt_off_to_idx(offset); val = atomic_load32(&vlapic->lvt_last[idx]); return val; } static void vlapic_lvt_write_handler(struct acrn_vlapic *vlapic, uint32_t offset) { uint32_t *lvtptr, mask, val, idx; struct lapic_regs *lapic; lapic = vlapic->apic_page; lvtptr = vlapic_get_lvtptr(vlapic, offset); val = *lvtptr; idx = lvt_off_to_idx(offset); if ((lapic->svr & APIC_SVR_ENABLE) == 0U) { val |= APIC_LVT_M; } mask = APIC_LVT_M | APIC_LVT_DS | APIC_LVT_VECTOR; switch (offset) { case APIC_OFFSET_TIMER_LVT: mask |= APIC_LVTT_TM; break; case APIC_OFFSET_ERROR_LVT: break; case APIC_OFFSET_LINT0_LVT: case APIC_OFFSET_LINT1_LVT: mask |= APIC_LVT_TM | APIC_LVT_RIRR | APIC_LVT_IIPP; /* FALLTHROUGH */ default: mask |= APIC_LVT_DM; break; } val &= mask; /* vlapic mask/unmask LINT0 for ExtINT? */ if (offset == APIC_OFFSET_LINT0_LVT && ((val & APIC_LVT_DM) == APIC_LVT_DM_EXTINT)) { uint32_t last = vlapic_get_lvt(vlapic, offset); /* mask -> unmask: may from every vlapic in the vm */ if (((last & APIC_LVT_M) != 0U) && ((val & APIC_LVT_M) == 0U)) { if (vlapic->vm->wire_mode == VPIC_WIRE_INTR || vlapic->vm->wire_mode == VPIC_WIRE_NULL) { vlapic->vm->wire_mode = VPIC_WIRE_LAPIC; dev_dbg(ACRN_DBG_LAPIC, "vpic wire mode -> LAPIC"); } else { pr_err("WARNING:invalid vpic wire mode change"); return; } /* unmask -> mask: only from the vlapic LINT0-ExtINT enabled */ } else if (((last & APIC_LVT_M) == 0U) && ((val & APIC_LVT_M) != 0U)) { if (vlapic->vm->wire_mode == VPIC_WIRE_LAPIC) { vlapic->vm->wire_mode = VPIC_WIRE_NULL; dev_dbg(ACRN_DBG_LAPIC, "vpic wire mode -> NULL"); } } else { /* APIC_LVT_M unchanged. No action required. */ } } else if (offset == APIC_OFFSET_TIMER_LVT) { vlapic_update_lvtt(vlapic, val); } else { /* No action required. */ } *lvtptr = val; atomic_store32(&vlapic->lvt_last[idx], val); } static void vlapic_mask_lvts(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic = vlapic->apic_page; lapic->lvt_cmci |= APIC_LVT_M; vlapic_lvt_write_handler(vlapic, APIC_OFFSET_CMCI_LVT); lapic->lvt[APIC_LVT_TIMER].val |= APIC_LVT_M; vlapic_lvt_write_handler(vlapic, APIC_OFFSET_TIMER_LVT); lapic->lvt[APIC_LVT_THERMAL].val |= APIC_LVT_M; vlapic_lvt_write_handler(vlapic, APIC_OFFSET_THERM_LVT); lapic->lvt[APIC_LVT_PMC].val |= APIC_LVT_M; vlapic_lvt_write_handler(vlapic, APIC_OFFSET_PERF_LVT); lapic->lvt[APIC_LVT_LINT0].val |= APIC_LVT_M; vlapic_lvt_write_handler(vlapic, APIC_OFFSET_LINT0_LVT); lapic->lvt[APIC_LVT_LINT1].val |= APIC_LVT_M; vlapic_lvt_write_handler(vlapic, APIC_OFFSET_LINT1_LVT); lapic->lvt[APIC_LVT_ERROR].val |= APIC_LVT_M; vlapic_lvt_write_handler(vlapic, APIC_OFFSET_ERROR_LVT); } static int vlapic_fire_lvt(struct acrn_vlapic *vlapic, uint32_t lvt) { uint32_t vec, mode; struct vcpu *vcpu = vlapic->vcpu; if ((lvt & APIC_LVT_M) != 0U) { return 0; } vec = lvt & APIC_LVT_VECTOR; mode = lvt & APIC_LVT_DM; switch (mode) { case APIC_LVT_DM_FIXED: if (vec < 16U) { vlapic_set_error(vlapic, APIC_ESR_SEND_ILLEGAL_VECTOR); return 0; } if (vlapic_set_intr_ready(vlapic, vec, false) != 0) { vcpu_make_request(vcpu, ACRN_REQUEST_EVENT); } break; case APIC_LVT_DM_NMI: vcpu_inject_nmi(vcpu); break; case APIC_LVT_DM_EXTINT: vcpu_inject_extint(vcpu); break; default: /* Other modes ignored */ return 0; } return 1; } static void dump_isrvec_stk(struct acrn_vlapic *vlapic) { uint32_t i; struct lapic_reg *isrptr; isrptr = &vlapic->apic_page->isr[0]; for (i = 0U; i < 8U; i++) { printf("ISR%u 0x%08x\n", i, isrptr[i].val); } for (i = 0U; i <= vlapic->isrvec_stk_top; i++) { printf("isrvec_stk[%u] = %hhu\n", i, vlapic->isrvec_stk[i]); } } /* * Algorithm adopted from section "Interrupt, Task and Processor Priority" * in Intel Architecture Manual Vol 3a. */ static void vlapic_update_ppr(struct acrn_vlapic *vlapic) { uint32_t top_isrvec; uint32_t tpr, ppr; /* * Note that the value on the stack at index 0 is always 0. * * This is a placeholder for the value of ISRV when none of the * bits is set in the ISRx registers. */ top_isrvec = (uint32_t)vlapic->isrvec_stk[vlapic->isrvec_stk_top]; tpr = vlapic->apic_page->tpr; /* update ppr */ { int32_t lastprio, curprio; struct lapic_reg *isrptr; uint32_t i, idx, vector; uint32_t isrvec; if (vlapic->isrvec_stk_top == 0U && top_isrvec != 0U) { panic("isrvec_stk is corrupted: %u", top_isrvec); } /* * Make sure that the priority of the nested interrupts is * always increasing. */ lastprio = -1; for (i = 1U; i <= vlapic->isrvec_stk_top; i++) { isrvec = (uint32_t)vlapic->isrvec_stk[i]; curprio = (int32_t)PRIO(isrvec); if (curprio <= lastprio) { dump_isrvec_stk(vlapic); panic("isrvec_stk does not satisfy invariant"); } lastprio = curprio; } /* * Make sure that each bit set in the ISRx registers has a * corresponding entry on the isrvec stack. */ i = 1U; isrptr = &vlapic->apic_page->isr[0]; for (vector = 0U; vector < 256U; vector++) { idx = vector / 32U; if ((isrptr[idx].val & (1U << (vector % 32U))) != 0U) { isrvec = (uint32_t)vlapic->isrvec_stk[i]; if ((i > vlapic->isrvec_stk_top) || ((i < ISRVEC_STK_SIZE) && (isrvec != vector))) { dump_isrvec_stk(vlapic); panic("ISR and isrvec_stk out of sync"); } i++; } } } if (PRIO(tpr) >= PRIO(top_isrvec)) { ppr = tpr; } else { ppr = top_isrvec & 0xf0U; } vlapic->apic_page->ppr = ppr; dev_dbg(ACRN_DBG_LAPIC, "%s 0x%02x", __func__, ppr); } static void vlapic_process_eoi(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic = vlapic->apic_page; struct lapic_reg *isrptr, *tmrptr; uint32_t i, vector, bitpos; isrptr = &lapic->isr[0]; tmrptr = &lapic->tmr[0]; /* i ranges effectively from 7 to 0 */ for (i = 8U; i > 0U; ) { i--; bitpos = (uint32_t)fls32(isrptr[i].val); if (bitpos != INVALID_BIT_INDEX) { if (vlapic->isrvec_stk_top == 0U) { panic("invalid vlapic isrvec_stk_top %u", vlapic->isrvec_stk_top); } isrptr[i].val &= ~(1U << bitpos); vector = (i * 32U) + bitpos; dev_dbg(ACRN_DBG_LAPIC, "EOI vector %u", vector); vlapic_dump_isr(vlapic, "vlapic_process_eoi"); vlapic->isrvec_stk_top--; vlapic_update_ppr(vlapic); if ((tmrptr[i].val & (1U << bitpos)) != 0U) { /* hook to vIOAPIC */ vioapic_process_eoi(vlapic->vm, vector); } return; } } dev_dbg(ACRN_DBG_LAPIC, "Gratuitous EOI"); } static void vlapic_set_error(struct acrn_vlapic *vlapic, uint32_t mask) { uint32_t lvt; vlapic->esr_pending |= mask; if (vlapic->esr_firing != 0) { return; } vlapic->esr_firing = 1; /* The error LVT always uses the fixed delivery mode. */ lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_ERROR_LVT); vlapic_fire_lvt(vlapic, lvt | APIC_LVT_DM_FIXED); vlapic->esr_firing = 0; } static int vlapic_trigger_lvt(struct acrn_vlapic *vlapic, uint32_t vector) { uint32_t lvt; struct vcpu *vcpu = vlapic->vcpu; if (vlapic_enabled(vlapic) == false) { /* * When the local APIC is global/hardware disabled, * LINT[1:0] pins are configured as INTR and NMI pins, * respectively. */ switch (vector) { case APIC_LVT_LINT0: vcpu_inject_extint(vcpu); break; case APIC_LVT_LINT1: vcpu_inject_nmi(vcpu); break; default: break; } return 0; } switch (vector) { case APIC_LVT_LINT0: lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_LINT0_LVT); break; case APIC_LVT_LINT1: lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_LINT1_LVT); break; case APIC_LVT_TIMER: lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_TIMER_LVT); lvt |= APIC_LVT_DM_FIXED; break; case APIC_LVT_ERROR: lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_ERROR_LVT); lvt |= APIC_LVT_DM_FIXED; break; case APIC_LVT_PMC: lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_PERF_LVT); break; case APIC_LVT_THERMAL: lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_THERM_LVT); break; case APIC_LVT_CMCI: lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_CMCI_LVT); break; default: return -EINVAL; } vlapic_fire_lvt(vlapic, lvt); return 0; } /* * This function populates 'dmask' with the set of vcpus that match the * addressing specified by the (dest, phys, lowprio) tuple. */ static void vlapic_calcdest(struct vm *vm, uint64_t *dmask, uint32_t dest, bool phys, bool lowprio) { struct acrn_vlapic *vlapic; struct acrn_vlapic *target = NULL; uint32_t dfr, ldr, ldest, cluster; uint32_t mda_flat_ldest, mda_cluster_ldest, mda_ldest, mda_cluster_id; uint64_t amask; uint16_t vcpu_id; if (dest == 0xffU) { /* * Broadcast in both logical and physical modes. */ *dmask = vm_active_cpus(vm); return; } if (phys) { /* * Physical mode: destination is LAPIC ID. */ *dmask = 0UL; vcpu_id = vm_apicid2vcpu_id(vm, (uint8_t)dest); if (vcpu_id < phys_cpu_num) { bitmap_set_lock(vcpu_id, dmask); } } else { /* * In the "Flat Model" the MDA is interpreted as an 8-bit wide * bitmask. This model is only available in the xAPIC mode. */ mda_flat_ldest = dest & 0xffU; /* * In the "Cluster Model" the MDA is used to identify a * specific cluster and a set of APICs in that cluster. */ mda_cluster_id = (dest >> 4) & 0xfU; mda_cluster_ldest = dest & 0xfU; /* * Logical mode: match each APIC that has a bit set * in its LDR that matches a bit in the ldest. */ *dmask = 0UL; amask = vm_active_cpus(vm); for (vcpu_id = ffs64(amask); vcpu_id != INVALID_BIT_INDEX; vcpu_id = ffs64(amask)) { bitmap_clear_lock(vcpu_id, &amask); vlapic = vm_lapic_from_vcpu_id(vm, vcpu_id); dfr = vlapic->apic_page->dfr; ldr = vlapic->apic_page->ldr; if ((dfr & APIC_DFR_MODEL_MASK) == APIC_DFR_MODEL_FLAT) { ldest = ldr >> 24; mda_ldest = mda_flat_ldest; } else if ((dfr & APIC_DFR_MODEL_MASK) == APIC_DFR_MODEL_CLUSTER) { cluster = ldr >> 28; ldest = (ldr >> 24) & 0xfU; if (cluster != mda_cluster_id) { continue; } mda_ldest = mda_cluster_ldest; } else { /* * Guest has configured a bad logical * model for this vcpu - skip it. */ dev_dbg(ACRN_DBG_LAPIC, "CANNOT deliver interrupt"); dev_dbg(ACRN_DBG_LAPIC, "vlapic has bad logical model %x", dfr); continue; } if ((mda_ldest & ldest) != 0U) { if (lowprio) { if (target == NULL) { target = vlapic; } else if (target->apic_page->ppr > vlapic->apic_page->ppr) { target = vlapic; } else { /* target is the dest */ } } else { bitmap_set_lock(vcpu_id, dmask); } } } if (lowprio && (target != NULL)) { bitmap_set_lock(target->vcpu->vcpu_id, dmask); } } } void calcvdest(struct vm *vm, uint64_t *dmask, uint32_t dest, bool phys) { vlapic_calcdest(vm, dmask, dest, phys, false); } static void vlapic_set_tpr(struct acrn_vlapic *vlapic, uint32_t val) { struct lapic_regs *lapic = vlapic->apic_page; if (lapic->tpr != val) { dev_dbg(ACRN_DBG_LAPIC, "vlapic TPR changed from %#x to %#x", lapic->tpr, val); lapic->tpr = val; vlapic_update_ppr(vlapic); } } static uint32_t vlapic_get_tpr(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic = vlapic->apic_page; return lapic->tpr; } void vlapic_set_cr8(struct acrn_vlapic *vlapic, uint64_t val) { uint32_t tpr; if ((val & ~0xfUL) != 0U) { struct vcpu *vcpu = vlapic->vcpu; vcpu_inject_gp(vcpu, 0U); return; } /* It is safe to narrow val as the higher 60 bits are 0s. */ tpr = (uint32_t)val << 4U; vlapic_set_tpr(vlapic, tpr); } uint64_t vlapic_get_cr8(struct acrn_vlapic *vlapic) { uint32_t tpr; tpr = vlapic_get_tpr(vlapic); return (uint64_t)(tpr >> 4U); } static int vlapic_icrlo_write_handler(struct acrn_vlapic *vlapic) { uint16_t vcpu_id; bool phys; uint64_t dmask = 0UL; uint32_t icr_low, icr_high, dest; uint32_t vec, mode, shorthand; struct lapic_regs *lapic; struct vcpu *target_vcpu; lapic = vlapic->apic_page; lapic->icr_lo &= ~APIC_DELSTAT_PEND; icr_low = lapic->icr_lo; icr_high = lapic->icr_hi; dest = icr_high >> APIC_ID_SHIFT; vec = icr_low & APIC_VECTOR_MASK; mode = icr_low & APIC_DELMODE_MASK; phys = ((icr_low & APIC_DESTMODE_LOG) == 0UL); shorthand = icr_low & APIC_DEST_MASK; if (mode == APIC_DELMODE_FIXED && vec < 16U) { vlapic_set_error(vlapic, APIC_ESR_SEND_ILLEGAL_VECTOR); dev_dbg(ACRN_DBG_LAPIC, "Ignoring invalid IPI %u", vec); return 0; } dev_dbg(ACRN_DBG_LAPIC, "icrlo 0x%08x icrhi 0x%08x triggered ipi %u", icr_low, icr_high, vec); if ((shorthand == APIC_DEST_SELF || shorthand == APIC_DEST_ALLISELF) && (mode == APIC_DELMODE_NMI || mode == APIC_DELMODE_INIT || mode == APIC_DELMODE_STARTUP)) { dev_dbg(ACRN_DBG_LAPIC, "Invalid ICR value"); return 0; } switch (shorthand) { case APIC_DEST_DESTFLD: vlapic_calcdest(vlapic->vm, &dmask, dest, phys, false); break; case APIC_DEST_SELF: bitmap_set_lock(vlapic->vcpu->vcpu_id, &dmask); break; case APIC_DEST_ALLISELF: dmask = vm_active_cpus(vlapic->vm); break; case APIC_DEST_ALLESELF: dmask = vm_active_cpus(vlapic->vm); bitmap_clear_lock(vlapic->vcpu->vcpu_id, &dmask); break; } while ((vcpu_id = ffs64(dmask)) != INVALID_BIT_INDEX) { bitmap_clear_lock(vcpu_id, &dmask); target_vcpu = vcpu_from_vid(vlapic->vm, vcpu_id); if (target_vcpu == NULL) { continue; } if (mode == APIC_DELMODE_FIXED) { vlapic_set_intr(target_vcpu, vec, LAPIC_TRIG_EDGE); dev_dbg(ACRN_DBG_LAPIC, "vlapic sending ipi %u to vcpu_id %hu", vec, vcpu_id); } else if (mode == APIC_DELMODE_NMI) { vcpu_inject_nmi(target_vcpu); dev_dbg(ACRN_DBG_LAPIC, "vlapic send ipi nmi to vcpu_id %hu", vcpu_id); } else if (mode == APIC_DELMODE_INIT) { if ((icr_low & APIC_LEVEL_MASK) == APIC_LEVEL_DEASSERT) { continue; } dev_dbg(ACRN_DBG_LAPIC, "Sending INIT from VCPU %hu to %hu", vlapic->vcpu->vcpu_id, vcpu_id); /* put target vcpu to INIT state and wait for SIPI */ pause_vcpu(target_vcpu, VCPU_PAUSED); reset_vcpu(target_vcpu); /* new cpu model only need one SIPI to kick AP run, * the second SIPI will be ignored as it move out of * wait-for-SIPI state. */ target_vcpu->arch_vcpu.nr_sipi = 1U; } else if (mode == APIC_DELMODE_STARTUP) { /* Ignore SIPIs in any state other than wait-for-SIPI */ if ((target_vcpu->state != VCPU_INIT) || (target_vcpu->arch_vcpu.nr_sipi == 0U)) { continue; } dev_dbg(ACRN_DBG_LAPIC, "Sending SIPI from VCPU %hu to %hu with vector %u", vlapic->vcpu->vcpu_id, vcpu_id, vec); target_vcpu->arch_vcpu.nr_sipi--; if (target_vcpu->arch_vcpu.nr_sipi > 0U) { continue; } target_vcpu->arch_vcpu.cpu_mode = CPU_MODE_REAL; target_vcpu->arch_vcpu.sipi_vector = vec; pr_err("Start Secondary VCPU%hu for VM[%d]...", target_vcpu->vcpu_id, target_vcpu->vm->attr.id); schedule_vcpu(target_vcpu); } else { pr_err("Unhandled icrlo write with mode %u\n", mode); } } return 0; /* handled completely in the kernel */ } int vlapic_pending_intr(struct acrn_vlapic *vlapic, uint32_t *vecptr) { struct lapic_regs *lapic = vlapic->apic_page; uint32_t i, vector, val, bitpos; struct lapic_reg *irrptr; if (vlapic->ops.apicv_pending_intr_fn != NULL) { return vlapic->ops.apicv_pending_intr_fn(vlapic, vecptr); } irrptr = &lapic->irr[0]; /* i ranges effectively from 7 to 0 */ for (i = 8U; i > 0U; ) { i--; val = atomic_load32(&irrptr[i].val); bitpos = (uint32_t)fls32(val); if (bitpos != INVALID_BIT_INDEX) { vector = (i * 32U) + bitpos; if (PRIO(vector) > PRIO(lapic->ppr)) { if (vecptr != NULL) { *vecptr = vector; } return 1; } break; } } return 0; } void vlapic_intr_accepted(struct acrn_vlapic *vlapic, uint32_t vector) { struct lapic_regs *lapic = vlapic->apic_page; struct lapic_reg *irrptr, *isrptr; uint32_t idx, stk_top; if (vlapic->ops.apicv_intr_accepted_fn != NULL) { vlapic->ops.apicv_intr_accepted_fn(vlapic, vector); return; } /* * clear the ready bit for vector being accepted in irr * and set the vector as in service in isr. */ idx = vector / 32U; irrptr = &lapic->irr[0]; atomic_clear32(&irrptr[idx].val, 1U << (vector % 32U)); vlapic_dump_irr(vlapic, "vlapic_intr_accepted"); isrptr = &lapic->isr[0]; isrptr[idx].val |= 1U << (vector % 32U); vlapic_dump_isr(vlapic, "vlapic_intr_accepted"); /* * Update the PPR */ vlapic->isrvec_stk_top++; stk_top = vlapic->isrvec_stk_top; if (stk_top >= ISRVEC_STK_SIZE) { panic("isrvec_stk_top overflow %u", stk_top); } vlapic->isrvec_stk[stk_top] = (uint8_t)vector; vlapic_update_ppr(vlapic); } static void vlapic_svr_write_handler(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic; uint32_t old, new, changed; lapic = vlapic->apic_page; new = lapic->svr; old = vlapic->svr_last; vlapic->svr_last = new; changed = old ^ new; if ((changed & APIC_SVR_ENABLE) != 0U) { if ((new & APIC_SVR_ENABLE) == 0U) { /* * The apic is now disabled so stop the apic timer * and mask all the LVT entries. */ dev_dbg(ACRN_DBG_LAPIC, "vlapic is software-disabled"); del_timer(&vlapic->vtimer.timer); vlapic_mask_lvts(vlapic); /* the only one enabled LINT0-ExtINT vlapic disabled */ if (vlapic->vm->wire_mode == VPIC_WIRE_NULL) { vlapic->vm->wire_mode = VPIC_WIRE_INTR; dev_dbg(ACRN_DBG_LAPIC, "vpic wire mode -> INTR"); } } else { /* * The apic is now enabled so restart the apic timer * if it is configured in periodic mode. */ dev_dbg(ACRN_DBG_LAPIC, "vlapic is software-enabled"); if (vlapic_lvtt_period(vlapic)) { if (set_expiration(vlapic)) { add_timer(&vlapic->vtimer.timer); } } } } } static int vlapic_read(struct acrn_vlapic *vlapic, int mmio_access, uint32_t offset_arg, uint64_t *data) { struct lapic_regs *lapic = vlapic->apic_page; uint32_t i; uint32_t offset = offset_arg; if (mmio_access == 0) { /* * XXX Generate GP fault for MSR accesses in xAPIC mode */ dev_dbg(ACRN_DBG_LAPIC, "x2APIC MSR read from offset %#x in xAPIC mode", offset); *data = 0UL; goto done; } if (offset > sizeof(*lapic)) { *data = 0UL; goto done; } offset &= ~0x3UL; switch (offset) { case APIC_OFFSET_ID: *data = lapic->id; break; case APIC_OFFSET_VER: *data = lapic->version; break; case APIC_OFFSET_TPR: *data = vlapic_get_tpr(vlapic); break; case APIC_OFFSET_APR: *data = lapic->apr; break; case APIC_OFFSET_PPR: *data = lapic->ppr; break; case APIC_OFFSET_EOI: *data = lapic->eoi; break; case APIC_OFFSET_LDR: *data = lapic->ldr; break; case APIC_OFFSET_DFR: *data = lapic->dfr; break; case APIC_OFFSET_SVR: *data = lapic->svr; break; case APIC_OFFSET_ISR0: case APIC_OFFSET_ISR1: case APIC_OFFSET_ISR2: case APIC_OFFSET_ISR3: case APIC_OFFSET_ISR4: case APIC_OFFSET_ISR5: case APIC_OFFSET_ISR6: case APIC_OFFSET_ISR7: i = (offset - APIC_OFFSET_ISR0) >> 4; *data = lapic->isr[i].val; break; case APIC_OFFSET_TMR0: case APIC_OFFSET_TMR1: case APIC_OFFSET_TMR2: case APIC_OFFSET_TMR3: case APIC_OFFSET_TMR4: case APIC_OFFSET_TMR5: case APIC_OFFSET_TMR6: case APIC_OFFSET_TMR7: i = (offset - APIC_OFFSET_TMR0) >> 4; *data = lapic->tmr[i].val; break; case APIC_OFFSET_IRR0: case APIC_OFFSET_IRR1: case APIC_OFFSET_IRR2: case APIC_OFFSET_IRR3: case APIC_OFFSET_IRR4: case APIC_OFFSET_IRR5: case APIC_OFFSET_IRR6: case APIC_OFFSET_IRR7: i = (offset - APIC_OFFSET_IRR0) >> 4; *data = lapic->irr[i].val; break; case APIC_OFFSET_ESR: *data = lapic->esr; break; case APIC_OFFSET_ICR_LOW: *data = lapic->icr_lo; break; case APIC_OFFSET_ICR_HI: *data = lapic->icr_hi; break; case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_LVT: case APIC_OFFSET_THERM_LVT: case APIC_OFFSET_PERF_LVT: case APIC_OFFSET_LINT0_LVT: case APIC_OFFSET_LINT1_LVT: case APIC_OFFSET_ERROR_LVT: *data = vlapic_get_lvt(vlapic, offset); #ifdef INVARIANTS reg = vlapic_get_lvtptr(vlapic, offset); ASSERT(*data == *reg, "inconsistent lvt value at offset %#x: %#lx/%#x", offset, *data, *reg); #endif break; case APIC_OFFSET_TIMER_ICR: /* if TSCDEADLINE mode always return 0*/ if (vlapic_lvtt_tsc_deadline(vlapic)) { *data = 0UL; } else { *data = lapic->icr_timer; } break; case APIC_OFFSET_TIMER_CCR: *data = vlapic_get_ccr(vlapic); break; case APIC_OFFSET_TIMER_DCR: *data = lapic->dcr_timer; break; case APIC_OFFSET_SELF_IPI: /* * XXX generate a GP fault if vlapic is in x2apic mode */ *data = 0UL; break; case APIC_OFFSET_RRR: default: *data = 0UL; break; } done: dev_dbg(ACRN_DBG_LAPIC, "vlapic read offset %#x, data %#lx", offset, *data); return 0; } static int vlapic_write(struct acrn_vlapic *vlapic, int mmio_access, uint32_t offset, uint64_t data) { struct lapic_regs *lapic = vlapic->apic_page; uint32_t *regptr; uint32_t data32 = (uint32_t)data; int retval; ASSERT((offset & 0xfU) == 0U && offset < CPU_PAGE_SIZE, "%s: invalid offset %#x", __func__, offset); dev_dbg(ACRN_DBG_LAPIC, "vlapic write offset %#x, data %#lx", offset, data); if (offset > sizeof(*lapic)) { return 0; } /* * XXX Generate GP fault for MSR accesses in xAPIC mode */ if (mmio_access == 0) { dev_dbg(ACRN_DBG_LAPIC, "x2APIC MSR write of %#lx to offset %#x in xAPIC mode", data, offset); return 0; } retval = 0; switch (offset) { case APIC_OFFSET_ID: lapic->id = data32; vlapic_id_write_handler(vlapic); break; case APIC_OFFSET_TPR: vlapic_set_tpr(vlapic, data32 & 0xffU); break; case APIC_OFFSET_EOI: vlapic_process_eoi(vlapic); break; case APIC_OFFSET_LDR: lapic->ldr = data32; vlapic_ldr_write_handler(vlapic); break; case APIC_OFFSET_DFR: lapic->dfr = data32; vlapic_dfr_write_handler(vlapic); break; case APIC_OFFSET_SVR: lapic->svr = data32; vlapic_svr_write_handler(vlapic); break; case APIC_OFFSET_ICR_LOW: lapic->icr_lo = data32; retval = vlapic_icrlo_write_handler(vlapic); break; case APIC_OFFSET_ICR_HI: lapic->icr_hi = data32; break; case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_LVT: case APIC_OFFSET_THERM_LVT: case APIC_OFFSET_PERF_LVT: case APIC_OFFSET_LINT0_LVT: case APIC_OFFSET_LINT1_LVT: case APIC_OFFSET_ERROR_LVT: regptr = vlapic_get_lvtptr(vlapic, offset); *regptr = data32; vlapic_lvt_write_handler(vlapic, offset); break; case APIC_OFFSET_TIMER_ICR: /* if TSCDEADLINE mode ignore icr_timer */ if (vlapic_lvtt_tsc_deadline(vlapic)) { break; } lapic->icr_timer = data32; vlapic_icrtmr_write_handler(vlapic); break; case APIC_OFFSET_TIMER_DCR: lapic->dcr_timer = data32; vlapic_dcr_write_handler(vlapic); break; case APIC_OFFSET_ESR: vlapic_esr_write_handler(vlapic); break; case APIC_OFFSET_SELF_IPI: break; case APIC_OFFSET_VER: case APIC_OFFSET_APR: case APIC_OFFSET_PPR: case APIC_OFFSET_RRR: break; /*The following cases fall to the default one: * APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7 * APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7 * APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7 */ case APIC_OFFSET_TIMER_CCR: break; default: /* Read only */ break; } return retval; } void vlapic_reset(struct acrn_vlapic *vlapic) { uint32_t i; struct lapic_regs *lapic; void *apic_page; lapic = vlapic->apic_page; apic_page = (void *)vlapic->apic_page; (void)memset(apic_page, 0U, CPU_PAGE_SIZE); if (vlapic->pir_desc) { (void)memset(vlapic->pir_desc, 0U, sizeof(struct vlapic_pir_desc)); } lapic->id = vlapic_build_id(vlapic); lapic->version = VLAPIC_VERSION; lapic->version |= (VLAPIC_MAXLVT_INDEX << MAXLVTSHIFT); lapic->dfr = 0xffffffffU; lapic->svr = APIC_SVR_VECTOR; vlapic_mask_lvts(vlapic); vlapic_reset_tmr(vlapic); lapic->icr_timer = 0U; lapic->dcr_timer = 0U; vlapic_reset_timer(vlapic); vlapic->svr_last = lapic->svr; for (i = 0U; i < (VLAPIC_MAXLVT_INDEX + 1U); i++) { vlapic->lvt_last[i] = 0U; } for (i = 0U; i < ISRVEC_STK_SIZE; i++) { vlapic->isrvec_stk[i] = 0U; } vlapic->isrvec_stk_top = 0U; } void vlapic_init(struct acrn_vlapic *vlapic) { ASSERT(vlapic->vm != NULL, "%s: vm is not initialized", __func__); ASSERT(vlapic->vcpu->vcpu_id < phys_cpu_num, "%s: vcpu_id is not initialized", __func__); ASSERT(vlapic->apic_page != NULL, "%s: apic_page is not initialized", __func__); /* * If the vlapic is configured in x2apic mode then it will be * accessed in the critical section via the MSR emulation code. */ vlapic->msr_apicbase = DEFAULT_APIC_BASE | APICBASE_ENABLED; if (vlapic->vcpu->vcpu_id == 0U) { vlapic->msr_apicbase |= APICBASE_BSP; } vlapic_create_timer(vlapic); vlapic_reset(vlapic); } void vlapic_restore(struct acrn_vlapic *vlapic, struct lapic_regs *regs) { struct lapic_regs *lapic; int i; lapic = vlapic->apic_page; lapic->tpr = regs->tpr; lapic->apr = regs->apr; lapic->ppr = regs->ppr; lapic->ldr = regs->ldr; lapic->dfr = regs->dfr; for (i = 0; i < 8; i++) { lapic->tmr[i].val = regs->tmr[i].val; } lapic->svr = regs->svr; vlapic_svr_write_handler(vlapic); lapic->lvt[APIC_LVT_TIMER].val = regs->lvt[APIC_LVT_TIMER].val; lapic->lvt[APIC_LVT_LINT0].val = regs->lvt[APIC_LVT_LINT0].val; lapic->lvt[APIC_LVT_LINT1].val = regs->lvt[APIC_LVT_LINT1].val; lapic->lvt[APIC_LVT_ERROR].val = regs->lvt[APIC_LVT_ERROR].val; lapic->icr_timer = regs->icr_timer; lapic->ccr_timer = regs->ccr_timer; lapic->dcr_timer = regs->dcr_timer; } static uint64_t vlapic_get_apicbase(struct acrn_vlapic *vlapic) { return vlapic->msr_apicbase; } static int vlapic_set_apicbase(struct acrn_vlapic *vlapic, uint64_t new) { if (vlapic->msr_apicbase != new) { dev_dbg(ACRN_DBG_LAPIC, "NOT support to change APIC_BASE MSR from %#lx to %#lx", vlapic->msr_apicbase, new); return (-1); } return 0; } void vlapic_deliver_intr(struct vm *vm, bool level, uint32_t dest, bool phys, uint32_t delmode, uint32_t vec, bool rh) { bool lowprio; uint16_t vcpu_id; uint64_t dmask; struct vcpu *target_vcpu; if (delmode != IOAPIC_RTE_DELFIXED && delmode != IOAPIC_RTE_DELLOPRI && delmode != IOAPIC_RTE_DELEXINT) { dev_dbg(ACRN_DBG_LAPIC, "vlapic intr invalid delmode %#x", delmode); return; } lowprio = (delmode == IOAPIC_RTE_DELLOPRI) || rh; /* * We don't provide any virtual interrupt redirection hardware so * all interrupts originating from the ioapic or MSI specify the * 'dest' in the legacy xAPIC format. */ vlapic_calcdest(vm, &dmask, dest, phys, lowprio); for (vcpu_id = ffs64(dmask); vcpu_id != INVALID_BIT_INDEX; vcpu_id = ffs64(dmask)) { struct acrn_vlapic *vlapic; bitmap_clear_lock(vcpu_id, &dmask); target_vcpu = vcpu_from_vid(vm, vcpu_id); if (target_vcpu == NULL) { return; } /* only make request when vlapic enabled */ vlapic = target_vcpu->arch_vcpu.vlapic; if (vlapic_enabled(vlapic)) { if (delmode == IOAPIC_RTE_DELEXINT) { vcpu_inject_extint(target_vcpu); } else { vlapic_set_intr(target_vcpu, vec, level); } } } } bool vlapic_enabled(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic = vlapic->apic_page; if (((vlapic->msr_apicbase & APICBASE_ENABLED) != 0U) && ((lapic->svr & APIC_SVR_ENABLE) != 0U)) { return true; } else { return false; } } static void vlapic_set_tmr(struct acrn_vlapic *vlapic, uint32_t vector, bool level) { struct lapic_regs *lapic; struct lapic_reg *tmrptr; uint32_t mask, idx; lapic = vlapic->apic_page; tmrptr = &lapic->tmr[0]; idx = vector / 32U; mask = 1U << (vector % 32U); if (level) { tmrptr[idx].val |= mask; } else { tmrptr[idx].val &= ~mask; } } /* * APICv batch set tmr will try to set multi vec at the same time * to avoid unnecessary VMCS read/update. */ void vlapic_apicv_batch_set_tmr(struct acrn_vlapic *vlapic) { if (vlapic->ops.apicv_batch_set_tmr_fn != NULL) { vlapic->ops.apicv_batch_set_tmr_fn(vlapic); } } static void vlapic_apicv_set_tmr(struct acrn_vlapic *vlapic, uint32_t vector, bool level) { if (vlapic->ops.apicv_set_tmr_fn != NULL) { vlapic->ops.apicv_set_tmr_fn(vlapic, vector, level); } } void vlapic_reset_tmr(struct acrn_vlapic *vlapic) { struct vcpu *vcpu = vlapic->vcpu; uint32_t vector; dev_dbg(ACRN_DBG_LAPIC, "vlapic resetting all vectors to edge-triggered"); for (vector = 0U; vector <= 255U; vector++) { vlapic_set_tmr(vlapic, vector, false); } vcpu_make_request(vcpu, ACRN_REQUEST_TMR_UPDATE); } void vlapic_set_tmr_one_vec(struct acrn_vlapic *vlapic, uint32_t delmode, uint32_t vector, bool level) { ASSERT(vector <= NR_MAX_VECTOR, "invalid vector %u", vector); /* * A level trigger is valid only for fixed and lowprio delivery modes. */ if (delmode != APIC_DELMODE_FIXED && delmode != APIC_DELMODE_LOWPRIO) { dev_dbg(ACRN_DBG_LAPIC, "Ignoring level trigger-mode for delivery-mode %u", delmode); return; } /* NOTE * We don't check whether the vcpu is in the dest here. That means * all vcpus of vm will do tmr update. * * If there is new caller to this function, need to refine this * part of work. */ dev_dbg(ACRN_DBG_LAPIC, "vector %u set to level-triggered", vector); vlapic_set_tmr(vlapic, vector, level); } int vlapic_set_intr(struct vcpu *vcpu, uint32_t vector, bool level) { struct acrn_vlapic *vlapic; int ret = 0; if (vcpu == NULL) { return -EINVAL; } /* * According to section "Maskable Hardware Interrupts" in Intel SDM * vectors 16 through 255 can be delivered through the local APIC. */ if (vector < 16U || vector > 255U) { return -EINVAL; } vlapic = vcpu->arch_vcpu.vlapic; if (vlapic_set_intr_ready(vlapic, vector, level) != 0) { vcpu_make_request(vcpu, ACRN_REQUEST_EVENT); } else { ret = -ENODEV; } return ret; } int vlapic_set_local_intr(struct vm *vm, uint16_t vcpu_id_arg, uint32_t vector) { struct acrn_vlapic *vlapic; uint64_t dmask = 0UL; int error; uint16_t vcpu_id = vcpu_id_arg; if ((vcpu_id != BROADCAST_CPU_ID) && (vcpu_id >= phys_cpu_num)) { return -EINVAL; } if (vcpu_id == BROADCAST_CPU_ID) { dmask = vm_active_cpus(vm); } else { bitmap_set_lock(vcpu_id, &dmask); } error = 0; for (vcpu_id = ffs64(dmask); vcpu_id != INVALID_BIT_INDEX; vcpu_id = ffs64(dmask)) { bitmap_clear_lock(vcpu_id, &dmask); vlapic = vm_lapic_from_vcpu_id(vm, vcpu_id); error = vlapic_trigger_lvt(vlapic, vector); if (error != 0) { break; } } return error; } int vlapic_intr_msi(struct vm *vm, uint64_t addr, uint64_t msg) { uint32_t delmode, vec; uint32_t dest; bool phys, rh; dev_dbg(ACRN_DBG_LAPIC, "lapic MSI addr: %#lx msg: %#lx", addr, msg); if ((addr & MSI_ADDR_MASK) != MSI_ADDR_BASE) { dev_dbg(ACRN_DBG_LAPIC, "lapic MSI invalid addr %#lx", addr); return -1; } /* * Extract the x86-specific fields from the MSI addr/msg * params according to the Intel Arch spec, Vol3 Ch 10. * * The PCI specification does not support level triggered * MSI/MSI-X so ignore trigger level in 'msg'. * * The 'dest' is interpreted as a logical APIC ID if both * the Redirection Hint and Destination Mode are '1' and * physical otherwise. */ dest = (uint32_t)(addr >> 12U) & 0xffU; phys = ((addr & MSI_ADDR_LOG) != MSI_ADDR_LOG); rh = ((addr & MSI_ADDR_RH) == MSI_ADDR_RH); delmode = (uint32_t)msg & APIC_DELMODE_MASK; vec = (uint32_t)msg & 0xffU; dev_dbg(ACRN_DBG_LAPIC, "lapic MSI %s dest %#x, vec %u", phys ? "physical" : "logical", dest, vec); vlapic_deliver_intr(vm, LAPIC_TRIG_EDGE, dest, phys, delmode, vec, rh); return 0; } static bool is_x2apic_msr(uint32_t msr) { if (msr >= 0x800U && msr <= 0xBFFU) { return true; } else { return false; } } static uint32_t x2apic_msr_to_regoff(uint32_t msr) { return (msr - 0x800U) << 4U; } bool is_vlapic_msr(uint32_t msr) { if (is_x2apic_msr(msr) || (msr == MSR_IA32_APIC_BASE)) { return true; } else { return false; } } /* interrupt context */ static int vlapic_timer_expired(void *data) { struct vcpu *vcpu = (struct vcpu *)data; struct acrn_vlapic *vlapic; struct lapic_regs *lapic; vlapic = vcpu->arch_vcpu.vlapic; lapic = vlapic->apic_page; /* inject vcpu timer interrupt if not masked */ if (!vlapic_lvtt_masked(vlapic)) { vlapic_intr_edge(vcpu, lapic->lvt[APIC_LVT_TIMER].val & APIC_LVTT_VECTOR); } if (!vlapic_lvtt_period(vlapic)) { vlapic->vtimer.timer.fire_tsc = 0UL; } return 0; } int vlapic_rdmsr(struct vcpu *vcpu, uint32_t msr, uint64_t *rval) { int error = 0; uint32_t offset; struct acrn_vlapic *vlapic; dev_dbg(ACRN_DBG_LAPIC, "cpu[%hu] rdmsr: %x", vcpu->vcpu_id, msr); vlapic = vcpu->arch_vcpu.vlapic; switch (msr) { case MSR_IA32_APIC_BASE: *rval = vlapic_get_apicbase(vlapic); break; case MSR_IA32_TSC_DEADLINE: *rval = vlapic_get_tsc_deadline_msr(vlapic); break; default: offset = x2apic_msr_to_regoff(msr); error = vlapic_read(vlapic, 0, offset, rval); break; } return error; } int vlapic_wrmsr(struct vcpu *vcpu, uint32_t msr, uint64_t val) { int error = 0; uint32_t offset; struct acrn_vlapic *vlapic; vlapic = vcpu->arch_vcpu.vlapic; switch (msr) { case MSR_IA32_APIC_BASE: error = vlapic_set_apicbase(vlapic, val); break; case MSR_IA32_TSC_DEADLINE: vlapic_set_tsc_deadline_msr(vlapic, val); break; default: offset = x2apic_msr_to_regoff(msr); error = vlapic_write(vlapic, 0, offset, val); break; } dev_dbg(ACRN_DBG_LAPIC, "cpu[%hu] wrmsr: %x val=%#x", vcpu->vcpu_id, msr, val); return error; } int vlapic_write_mmio_reg(struct vcpu *vcpu, uint64_t gpa, uint64_t wval, uint8_t size) { int error; uint32_t off; struct acrn_vlapic *vlapic; off = (uint32_t)(gpa - DEFAULT_APIC_BASE); /* * Memory mapped local apic accesses must be 4 bytes wide and * aligned on a 16-byte boundary. */ if (size != 4U || (off & 0xfU) != 0U) { return -EINVAL; } vlapic = vcpu->arch_vcpu.vlapic; error = vlapic_write(vlapic, 1, off, wval); return error; } int vlapic_read_mmio_reg(struct vcpu *vcpu, uint64_t gpa, uint64_t *rval, __unused uint8_t size) { int error; uint32_t off; struct acrn_vlapic *vlapic; off = (uint32_t)(gpa - DEFAULT_APIC_BASE); /* * Memory mapped local apic accesses should be aligned on a * 16-byte boundary. They are also suggested to be 4 bytes * wide, alas not all OSes follow suggestions. */ off &= ~0x3U; if ((off & 0xfU) != 0U) { return -EINVAL; } vlapic = vcpu->arch_vcpu.vlapic; error = vlapic_read(vlapic, 1, off, rval); return error; } int vlapic_mmio_access_handler(struct vcpu *vcpu, struct io_request *io_req, __unused void *handler_private_data) { struct mmio_request *mmio_req = &io_req->reqs.mmio; uint64_t gpa = mmio_req->address; int ret = 0; /* Note all RW to LAPIC are 32-Bit in size */ ASSERT(mmio_req->size == 4UL, "All RW to LAPIC must be 32-bits in size"); if (mmio_req->direction == REQUEST_READ) { ret = vlapic_read_mmio_reg(vcpu, gpa, &mmio_req->value, mmio_req->size); } else if (mmio_req->direction == REQUEST_WRITE) { ret = vlapic_write_mmio_reg(vcpu, gpa, mmio_req->value, mmio_req->size); } else { /* Can never happen due to the range of mmio_req->direction. */ } io_req->processed = REQ_STATE_COMPLETE; return ret; } int vlapic_create(struct vcpu *vcpu) { void *apic_page = alloc_page(); struct acrn_vlapic *vlapic = calloc(1U, sizeof(struct acrn_vlapic)); ASSERT(vlapic != NULL, "vlapic allocate failed"); ASSERT(apic_page != NULL, "apic reg page allocate failed"); (void)memset((void *)apic_page, 0U, CPU_PAGE_SIZE); vlapic->vm = vcpu->vm; vlapic->vcpu = vcpu; vlapic->apic_page = (struct lapic_regs *)apic_page; if (is_vapic_supported()) { if (is_vapic_intr_delivery_supported()) { vlapic->ops.apicv_set_intr_ready_fn = apicv_set_intr_ready; vlapic->ops.apicv_pending_intr_fn = apicv_pending_intr; vlapic->ops.apicv_set_tmr_fn = apicv_set_tmr; vlapic->ops.apicv_batch_set_tmr_fn = apicv_batch_set_tmr; vlapic->pir_desc = (struct vlapic_pir_desc *)(&(vlapic->pir)); } if (is_vcpu_bsp(vcpu)) { ept_mr_add(vcpu->vm, apicv_get_apic_access_addr(vcpu->vm), DEFAULT_APIC_BASE, CPU_PAGE_SIZE, IA32E_EPT_W_BIT | IA32E_EPT_R_BIT | IA32E_EPT_UNCACHED); } } else { /*No APICv support*/ if (register_mmio_emulation_handler(vcpu->vm, vlapic_mmio_access_handler, (uint64_t)DEFAULT_APIC_BASE, (uint64_t)DEFAULT_APIC_BASE + CPU_PAGE_SIZE, (void *) 0) != 0) { return -1; } } vcpu->arch_vcpu.vlapic = vlapic; vlapic_init(vlapic); return 0; } void vlapic_free(struct vcpu *vcpu) { struct acrn_vlapic *vlapic = NULL; void *apic_page = NULL; if (vcpu == NULL) { return; } vlapic = vcpu->arch_vcpu.vlapic; if (vlapic == NULL) { return; } del_timer(&vlapic->vtimer.timer); if (!is_vapic_supported()) { unregister_mmio_emulation_handler(vcpu->vm, (uint64_t)DEFAULT_APIC_BASE, (uint64_t)DEFAULT_APIC_BASE + CPU_PAGE_SIZE); } apic_page = vlapic->apic_page; if (apic_page == NULL) { free(vlapic); return; } free(apic_page); free(vlapic); } /** * APIC-v functions * **/ static int apicv_set_intr_ready(struct acrn_vlapic *vlapic, uint32_t vector, __unused bool level) { struct vlapic_pir_desc *pir_desc; uint64_t mask; uint32_t idx; int32_t notify; pir_desc = vlapic->pir_desc; idx = vector / 64U; mask = 1UL << (vector % 64U); atomic_set64(&pir_desc->pir[idx], mask); notify = (atomic_cmpxchg64(&pir_desc->pending, 0UL, 1UL) == 0UL) ? 1 : 0; return notify; } static int apicv_pending_intr(struct acrn_vlapic *vlapic, __unused uint32_t *vecptr) { struct vlapic_pir_desc *pir_desc; struct lapic_regs *lapic; uint64_t pending, pirval; uint32_t i, ppr, vpr; pir_desc = vlapic->pir_desc; pending = atomic_load64(&pir_desc->pending); if (pending == 0U) { return 0; } lapic = vlapic->apic_page; ppr = lapic->ppr & 0xF0U; if (ppr == 0U) { return 1; } /* i ranges effectively from 3 to 0 */ for (i = 4U; i > 0U; ) { i--; pirval = pir_desc->pir[i]; if (pirval != 0U) { vpr = (((i * 64U) + (uint32_t)fls64(pirval)) & 0xF0U); return (vpr > ppr) ? 1 : 0; } } return 0; } static void apicv_set_tmr(__unused struct acrn_vlapic *vlapic, uint32_t vector, bool level) { uint64_t mask, val; uint32_t field; mask = 1UL << (vector % 64U); field = VMX_EOI_EXIT(vector); val = exec_vmread64(field); if (level) { val |= mask; } else { val &= ~mask; } exec_vmwrite64(field, val); } /* Update the VMX_EOI_EXIT according to related tmr */ #define EOI_STEP_LEN (64U) #define TMR_STEP_LEN (32U) static void apicv_batch_set_tmr(struct acrn_vlapic *vlapic) { struct lapic_regs *lapic = vlapic->apic_page; uint64_t val; struct lapic_reg *ptr; uint32_t s, e; ptr = &lapic->tmr[0]; s = 0U; e = 256U; while (s < e) { val = ptr[(s/TMR_STEP_LEN) + 1].val; val <<= TMR_STEP_LEN; val |= ptr[s/TMR_STEP_LEN].val; exec_vmwrite64(VMX_EOI_EXIT(s), val); s += EOI_STEP_LEN; } } /** *APIC-v: Get the HPA to APIC-access page * **/ uint64_t apicv_get_apic_access_addr(__unused struct vm *vm) { if (apicv_apic_access_addr == NULL) { apicv_apic_access_addr = alloc_page(); ASSERT(apicv_apic_access_addr != NULL, "apicv allocate failed."); (void)memset((void *)apicv_apic_access_addr, 0U, CPU_PAGE_SIZE); } return HVA2HPA(apicv_apic_access_addr); } /** *APIC-v: Get the HPA to virtualized APIC registers page * **/ uint64_t apicv_get_apic_page_addr(struct acrn_vlapic *vlapic) { return HVA2HPA(vlapic->apic_page); } /* * Transfer the pending interrupts in the PIR descriptor to the IRR * in the virtual APIC page. */ void apicv_inject_pir(struct acrn_vlapic *vlapic) { struct vlapic_pir_desc *pir_desc; struct lapic_regs *lapic; uint64_t val, pirval; uint16_t rvi, pirbase = 0U, i; uint16_t intr_status_old, intr_status_new; struct lapic_reg *irr = NULL; pir_desc = vlapic->pir_desc; if (atomic_cmpxchg64(&pir_desc->pending, 1UL, 0UL) != 1UL) { return; } pirval = 0UL; lapic = vlapic->apic_page; irr = &lapic->irr[0]; for (i = 0U; i < 4U; i++) { val = atomic_readandclear64(&pir_desc->pir[i]); if (val != 0UL) { irr[i * 2U].val |= (uint32_t)val; irr[(i * 2U) + 1U].val |= (uint32_t)(val >> 32); pirbase = 64U*i; pirval = val; } } /* * Update RVI so the processor can evaluate pending virtual * interrupts on VM-entry. * * It is possible for pirval to be 0 here, even though the * pending bit has been set. The scenario is: * CPU-Y is sending a posted interrupt to CPU-X, which * is running a guest and processing posted interrupts in h/w. * CPU-X will eventually exit and the state seen in s/w is * the pending bit set, but no PIR bits set. * * CPU-X CPU-Y * (vm running) (host running) * rx posted interrupt * CLEAR pending bit * SET PIR bit * READ/CLEAR PIR bits * SET pending bit * (vm exit) * pending bit set, PIR 0 */ if (pirval != 0UL) { rvi = pirbase + fls64(pirval); intr_status_old = 0xFFFFU & exec_vmread16(VMX_GUEST_INTR_STATUS); intr_status_new = (intr_status_old & 0xFF00U) | rvi; if (intr_status_new > intr_status_old) { exec_vmwrite16(VMX_GUEST_INTR_STATUS, intr_status_new); } } } int apic_access_vmexit_handler(struct vcpu *vcpu) { int err = 0; uint32_t offset = 0U; uint64_t qual, access_type; struct acrn_vlapic *vlapic; struct mmio_request *mmio = &vcpu->req.reqs.mmio; qual = vcpu->arch_vcpu.exit_qualification; access_type = APIC_ACCESS_TYPE(qual); /*parse offset if linear access*/ if (access_type <= 3UL) { offset = (uint32_t)APIC_ACCESS_OFFSET(qual); } vlapic = vcpu->arch_vcpu.vlapic; err = decode_instruction(vcpu); /* apic access should already fetched instruction, decode_instruction * will not trigger #PF, so if it failed, just return error_no */ if (err < 0) { return err; } if (access_type == 1UL) { if (emulate_instruction(vcpu) == 0) { err = vlapic_write(vlapic, 1, offset, mmio->value); } } else if (access_type == 0UL) { err = vlapic_read(vlapic, 1, offset, &mmio->value); if (err < 0) { return err; } err = emulate_instruction(vcpu); } else { pr_err("Unhandled APIC access type: %lu\n", access_type); err = -EINVAL; } TRACE_2L(TRACE_VMEXIT_APICV_ACCESS, qual, (uint64_t)vlapic); return err; } int veoi_vmexit_handler(struct vcpu *vcpu) { struct acrn_vlapic *vlapic = NULL; uint32_t vector; struct lapic_regs *lapic; struct lapic_reg *tmrptr; uint32_t idx, mask; vcpu_retain_rip(vcpu); vlapic = vcpu->arch_vcpu.vlapic; lapic = vlapic->apic_page; vector = (uint32_t)(vcpu->arch_vcpu.exit_qualification & 0xFFUL); tmrptr = &lapic->tmr[0]; idx = vector / 32U; mask = 1U << (vector % 32U); if ((tmrptr[idx].val & mask) != 0U) { /* hook to vIOAPIC */ vioapic_process_eoi(vlapic->vm, vector); } TRACE_2L(TRACE_VMEXIT_APICV_VIRT_EOI, vector, 0UL); return 0; } int apic_write_vmexit_handler(struct vcpu *vcpu) { uint64_t qual; int error, handled; uint32_t offset; struct acrn_vlapic *vlapic = NULL; qual = vcpu->arch_vcpu.exit_qualification; offset = (uint32_t)(qual & 0xFFFUL); handled = 1; vcpu_retain_rip(vcpu); vlapic = vcpu->arch_vcpu.vlapic; switch (offset) { case APIC_OFFSET_ID: vlapic_id_write_handler(vlapic); break; case APIC_OFFSET_EOI: vlapic_process_eoi(vlapic); break; case APIC_OFFSET_LDR: vlapic_ldr_write_handler(vlapic); break; case APIC_OFFSET_DFR: vlapic_dfr_write_handler(vlapic); break; case APIC_OFFSET_SVR: vlapic_svr_write_handler(vlapic); break; case APIC_OFFSET_ESR: vlapic_esr_write_handler(vlapic); break; case APIC_OFFSET_ICR_LOW: error = vlapic_icrlo_write_handler(vlapic); if (error != 0) { handled = 0; } break; case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_LVT: case APIC_OFFSET_THERM_LVT: case APIC_OFFSET_PERF_LVT: case APIC_OFFSET_LINT0_LVT: case APIC_OFFSET_LINT1_LVT: case APIC_OFFSET_ERROR_LVT: vlapic_lvt_write_handler(vlapic, offset); break; case APIC_OFFSET_TIMER_ICR: vlapic_icrtmr_write_handler(vlapic); break; case APIC_OFFSET_TIMER_DCR: vlapic_dcr_write_handler(vlapic); break; default: handled = 0; pr_err("Unhandled APIC-Write, offset:0x%x", offset); break; } TRACE_2L(TRACE_VMEXIT_APICV_WRITE, offset, 0UL); return handled; } int tpr_below_threshold_vmexit_handler(__unused struct vcpu *vcpu) { pr_err("Unhandled %s.", __func__); return 0; }