/* * Copyright (C) 2020 Intel Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #ifdef CONFIG_IVSHMEM_ENABLED #include #include #include #include #include #include #include #include "vpci_priv.h" /* config space of ivshmem device */ #define IVSHMEM_CLASS 0x05U #define IVSHMEM_REV 0x01U /* * ivshmem device supports bar0, bar1 and bar2, * indexes of them shall begin with 0 and be continuous. */ #define IVSHMEM_MMIO_BAR 0U #define IVSHMEM_MSIX_BAR 1U #define IVSHMEM_SHM_BAR 2U #define IVSHMEM_MMIO_BAR_SIZE 256UL /* The device-specific registers of ivshmem device */ #define IVSHMEM_IRQ_MASK_REG 0x0U #define IVSHMEM_IRQ_STA_REG 0x4U #define IVSHMEM_IV_POS_REG 0x8U #define IVSHMEM_DOORBELL_REG 0xcU static struct ivshmem_shm_region mem_regions[8] = { IVSHMEM_SHM_REGIONS }; union ivshmem_doorbell { uint32_t val; struct { uint16_t vector_index; uint16_t peer_id; } reg; }; struct ivshmem_device { struct pci_vdev* pcidev; union { uint32_t data[4]; struct { uint32_t irq_mask; uint32_t irq_state; /* * If the device is not configured for interrupts, * this is zero. Else, ivpos is the device's ID. */ uint32_t ivpos; /* Writing doorbell register requests to interrupt a peer */ union ivshmem_doorbell doorbell; } regs; } mmio; struct ivshmem_shm_region *region; }; /* IVSHMEM_SHM_SIZE is provided by offline tool */ static uint8_t ivshmem_base[IVSHMEM_SHM_SIZE] __aligned(PDE_SIZE); static struct ivshmem_device ivshmem_dev[IVSHMEM_DEV_NUM]; static spinlock_t ivshmem_dev_lock = { .head = 0U, .tail = 0U, }; void init_ivshmem_shared_memory() { uint32_t i; uint64_t addr = hva2hpa(&ivshmem_base); for (i = 0U; i < ARRAY_SIZE(mem_regions); i++) { mem_regions[i].hpa = addr; addr += mem_regions[i].size; } } /* * @pre name != NULL */ static struct ivshmem_shm_region *find_shm_region(const char *name) { uint32_t i, num = ARRAY_SIZE(mem_regions); for (i = 0U; i < num; i++) { if (strncmp(name, mem_regions[i].name, sizeof(mem_regions[0].name)) == 0) { break; } } return ((i < num) ? &mem_regions[i] : NULL); } /* * @brief There are two ivshmem server implementation in HV-land and * DM-land, they're used for briding the notification channel * between ivshmem devices acrossed VMs. * * @pre vdev != NULL * @pre region->doorbell_peers[vm_id] = NULL */ static void ivshmem_server_bind_peer(struct pci_vdev *vdev) { uint16_t vm_id; struct acrn_vm_pci_dev_config *dev_config = vdev->pci_dev_config; struct ivshmem_device *ivs_dev = (struct ivshmem_device *)vdev->priv_data; struct ivshmem_shm_region *region = find_shm_region(dev_config->shm_region_name); if (region != NULL) { vm_id = vpci2vm(vdev->vpci)->vm_id; /* Device ID equals to VM ID*/ ivs_dev->mmio.regs.ivpos = vm_id; ivs_dev->region = region; region->doorbell_peers[vm_id] = ivs_dev; } } /* * @pre vdev != NULL */ static void ivshmem_server_unbind_peer(struct pci_vdev *vdev) { struct ivshmem_shm_region *region = ((struct ivshmem_device *)vdev->priv_data)->region; region->doorbell_peers[vpci2vm(vdev->vpci)->vm_id] = NULL; } /* * @pre src_ivs_dev != NULL */ static void ivshmem_server_notify_peer(struct ivshmem_device *src_ivs_dev, uint16_t dest_peer_id, uint16_t vector_index) { struct acrn_vm *dest_vm; struct ivshmem_device *dest_ivs_dev; struct msix_table_entry *entry; struct ivshmem_shm_region *region = src_ivs_dev->region; if (dest_peer_id < MAX_IVSHMEM_PEER_NUM) { dest_ivs_dev = region->doorbell_peers[dest_peer_id]; if ((dest_ivs_dev != NULL) && vpci_vmsix_enabled(dest_ivs_dev->pcidev) && (vector_index < dest_ivs_dev->pcidev->msix.table_count)) { entry = &(dest_ivs_dev->pcidev->msix.table_entries[vector_index]); if ((entry->vector_control & PCIM_MSIX_VCTRL_MASK) == 0U) { dest_vm = vpci2vm(dest_ivs_dev->pcidev->vpci); vlapic_inject_msi(dest_vm, entry->addr, entry->data); } else { pr_err("%s,target msix entry [%d] is masked.\n", __func__, vector_index); } } else { pr_err("%s,Invalid peer, ID = %d, vector index [%d] or MSI-X is disabled.\n", __func__, dest_peer_id, vector_index); } } } /* * @post vdev->priv_data != NULL */ static void create_ivshmem_device(struct pci_vdev *vdev) { uint32_t i; spinlock_obtain(&ivshmem_dev_lock); for (i = 0U; i < IVSHMEM_DEV_NUM; i++) { if (ivshmem_dev[i].pcidev == NULL) { ivshmem_dev[i].pcidev = vdev; vdev->priv_data = &ivshmem_dev[i]; break; } } spinlock_release(&ivshmem_dev_lock); ASSERT((i < IVSHMEM_DEV_NUM), "failed to find and set ivshmem device"); } /* * @pre vdev->priv_data != NULL */ static int32_t ivshmem_mmio_handler(struct io_request *io_req, void *data) { union ivshmem_doorbell doorbell; struct acrn_mmio_request *mmio = &io_req->reqs.mmio_request; struct pci_vdev *vdev = (struct pci_vdev *) data; struct ivshmem_device *ivs_dev = (struct ivshmem_device *) vdev->priv_data; uint64_t offset = mmio->address - vdev->vbars[IVSHMEM_MMIO_BAR].base_gpa; if ((mmio->size == 4U) && ((offset & 0x3U) == 0U)) { /* * IVSHMEM_IRQ_MASK_REG and IVSHMEM_IRQ_STA_REG are R/W registers * they are useless for ivshmem Rev.1. * IVSHMEM_IV_POS_REG is Read-Only register and IVSHMEM_DOORBELL_REG * is Write-Only register, they are used for interrupt. */ if (mmio->direction == ACRN_IOREQ_DIR_READ) { if (offset != IVSHMEM_DOORBELL_REG) { mmio->value = ivs_dev->mmio.data[offset >> 2U]; } else { mmio->value = 0UL; } } else { if (offset != IVSHMEM_IV_POS_REG) { if (offset == IVSHMEM_DOORBELL_REG) { doorbell.val = mmio->value; ivshmem_server_notify_peer(ivs_dev, doorbell.reg.peer_id, doorbell.reg.vector_index); } else { ivs_dev->mmio.data[offset >> 2U] = mmio->value; } } } } return 0; } static int32_t read_ivshmem_vdev_cfg(const struct pci_vdev *vdev, uint32_t offset, uint32_t bytes, uint32_t *val) { *val = pci_vdev_read_vcfg(vdev, offset, bytes); return 0; } static void ivshmem_vbar_unmap(struct pci_vdev *vdev, uint32_t idx) { struct acrn_vm *vm = vpci2vm(vdev->vpci); struct pci_vbar *vbar = &vdev->vbars[idx]; if ((idx == IVSHMEM_SHM_BAR) && (vbar->base_gpa != 0UL)) { ept_del_mr(vm, (uint64_t *)vm->arch_vm.nworld_eptp, vbar->base_gpa, vbar->size); } else if (((idx == IVSHMEM_MMIO_BAR) || (idx == IVSHMEM_MSIX_BAR)) && (vbar->base_gpa != 0UL)) { unregister_mmio_emulation_handler(vm, vbar->base_gpa, (vbar->base_gpa + vbar->size)); } } /* * @pre vdev->priv_data != NULL * @pre msix->table_offset == 0U */ static void ivshmem_vbar_map(struct pci_vdev *vdev, uint32_t idx) { struct acrn_vm *vm = vpci2vm(vdev->vpci); struct pci_vbar *vbar = &vdev->vbars[idx]; struct ivshmem_device *ivs_dev = (struct ivshmem_device *) vdev->priv_data; if ((idx == IVSHMEM_SHM_BAR) && (vbar->base_hpa != INVALID_HPA) && (vbar->base_gpa != 0UL)) { ept_add_mr(vm, (uint64_t *)vm->arch_vm.nworld_eptp, vbar->base_hpa, vbar->base_gpa, vbar->size, EPT_RD | EPT_WR | EPT_WB | EPT_IGNORE_PAT); } else if ((idx == IVSHMEM_MMIO_BAR) && (vbar->base_gpa != 0UL)) { (void)memset(&ivs_dev->mmio, 0U, sizeof(ivs_dev->mmio)); register_mmio_emulation_handler(vm, ivshmem_mmio_handler, vbar->base_gpa, (vbar->base_gpa + vbar->size), vdev, false); ept_del_mr(vm, (uint64_t *)vm->arch_vm.nworld_eptp, vbar->base_gpa, round_page_up(vbar->size)); } else if ((idx == IVSHMEM_MSIX_BAR) && (vbar->base_gpa != 0UL)) { register_mmio_emulation_handler(vm, vmsix_handle_table_mmio_access, vbar->base_gpa, (vbar->base_gpa + vbar->size), vdev, false); ept_del_mr(vm, (uint64_t *)vm->arch_vm.nworld_eptp, vbar->base_gpa, vbar->size); vdev->msix.mmio_gpa = vbar->base_gpa; } } static int32_t write_ivshmem_vdev_cfg(struct pci_vdev *vdev, uint32_t offset, uint32_t bytes, uint32_t val) { if (vbar_access(vdev, offset)) { vpci_update_one_vbar(vdev, pci_bar_index(offset), val, ivshmem_vbar_map, ivshmem_vbar_unmap); } else if (msixcap_access(vdev, offset)) { write_vmsix_cap_reg(vdev, offset, bytes, val); } else { pci_vdev_write_vcfg(vdev, offset, bytes, val); } return 0; } /* * @pre vdev != NULL * @pre bar_idx < PCI_BAR_COUNT */ static void init_ivshmem_bar(struct pci_vdev *vdev, uint32_t bar_idx) { struct pci_vbar *vbar; uint64_t addr, mask, size = 0UL; struct acrn_vm_pci_dev_config *dev_config = vdev->pci_dev_config; addr = dev_config->vbar_base[bar_idx]; vbar = &vdev->vbars[bar_idx]; vbar->bar_type.bits = addr; mask = is_pci_io_bar(vbar) ? PCI_BASE_ADDRESS_IO_MASK : PCI_BASE_ADDRESS_MEM_MASK; vbar->bar_type.bits &= (~mask); if (bar_idx == IVSHMEM_SHM_BAR) { struct ivshmem_shm_region *region = find_shm_region(dev_config->shm_region_name); if (region != NULL) { size = region->size; vbar->base_hpa = region->hpa; } else { pr_err("%s ivshmem device %x:%x.%x has no memory region\n", __func__, vdev->bdf.bits.b, vdev->bdf.bits.d, vdev->bdf.bits.f); } } else if (bar_idx == IVSHMEM_MSIX_BAR) { size = VMSIX_ENTRY_TABLE_PBA_BAR_SIZE; } else if (bar_idx == IVSHMEM_MMIO_BAR) { size = IVSHMEM_MMIO_BAR_SIZE; } if (size != 0UL) { vbar->size = size; vbar->mask = (uint32_t) (~(size - 1UL)); pci_vdev_write_vbar(vdev, bar_idx, (uint32_t)addr); if (is_pci_mem64lo_bar(vbar)) { vbar = &vdev->vbars[bar_idx + 1U]; vbar->is_mem64hi = true; vbar->mask = (uint32_t) ((~(size - 1UL)) >> 32U); pci_vdev_write_vbar(vdev, (bar_idx + 1U), ((uint32_t)(addr >> 32U))); } } } static void init_ivshmem_vdev(struct pci_vdev *vdev) { create_ivshmem_device(vdev); /* initialize ivshmem config */ pci_vdev_write_vcfg(vdev, PCIR_VENDOR, 2U, IVSHMEM_VENDOR_ID); pci_vdev_write_vcfg(vdev, PCIR_DEVICE, 2U, IVSHMEM_DEVICE_ID); pci_vdev_write_vcfg(vdev, PCIR_REVID, 1U, IVSHMEM_REV); pci_vdev_write_vcfg(vdev, PCIR_CLASS, 1U, IVSHMEM_CLASS); add_vmsix_capability(vdev, MAX_IVSHMEM_MSIX_TBL_ENTRY_NUM, IVSHMEM_MSIX_BAR); /* initialize ivshmem bars */ vdev->nr_bars = 4U; init_ivshmem_bar(vdev, IVSHMEM_MMIO_BAR); init_ivshmem_bar(vdev, IVSHMEM_MSIX_BAR); init_ivshmem_bar(vdev, IVSHMEM_SHM_BAR); ivshmem_server_bind_peer(vdev); vdev->user = vdev; } /* * @pre vdev->priv_data != NULL */ static void deinit_ivshmem_vdev(struct pci_vdev *vdev) { struct ivshmem_device *ivs_dev = (struct ivshmem_device *) vdev->priv_data; ivshmem_server_unbind_peer(vdev); ivs_dev->pcidev = NULL; vdev->priv_data = NULL; vdev->user = NULL; } /** * @pre vm != NULL * @pre dev != NULL */ int32_t create_ivshmem_vdev(struct acrn_vm *vm, struct acrn_vdev *dev) { uint32_t i; struct acrn_vm_config *vm_config = get_vm_config(vm->vm_id); struct acrn_vm_pci_dev_config *dev_config = NULL; int32_t ret = -EINVAL; for (i = 0U; i < vm_config->pci_dev_num; i++) { dev_config = &vm_config->pci_devs[i]; if (strncmp(dev_config->shm_region_name, (char *)dev->args, sizeof(dev_config->shm_region_name)) == 0) { struct ivshmem_shm_region *region = find_shm_region(dev_config->shm_region_name); if ((region != NULL) && (region->size == dev->io_size[IVSHMEM_SHM_BAR])) { spinlock_obtain(&vm->vpci.lock); dev_config->vbdf.value = (uint16_t) dev->slot; dev_config->vbar_base[IVSHMEM_MMIO_BAR] = (uint64_t) dev->io_addr[IVSHMEM_MMIO_BAR]; dev_config->vbar_base[IVSHMEM_MSIX_BAR] = (uint64_t) dev->io_addr[IVSHMEM_MSIX_BAR]; dev_config->vbar_base[IVSHMEM_SHM_BAR] = (uint64_t) dev->io_addr[IVSHMEM_SHM_BAR]; dev_config->vbar_base[IVSHMEM_SHM_BAR] |= ((uint64_t) dev->io_addr[IVSHMEM_SHM_BAR + 1U]) << 32U; (void) vpci_init_vdev(&vm->vpci, dev_config, NULL); spinlock_release(&vm->vpci.lock); ret = 0; } else { pr_warn("%s, failed to create ivshmem device %x:%x.%x\n", __func__, dev->slot >> 8U, (dev->slot >> 3U) & 0x1fU, dev->slot & 0x7U); } break; } } return ret; } int32_t destroy_ivshmem_vdev(struct pci_vdev *vdev) { uint32_t i; for (i = 0U; i < vdev->nr_bars; i++) { vpci_update_one_vbar(vdev, i, 0U, NULL, ivshmem_vbar_unmap); } return 0; } const struct pci_vdev_ops vpci_ivshmem_ops = { .init_vdev = init_ivshmem_vdev, .deinit_vdev = deinit_ivshmem_vdev, .write_vdev_cfg = write_ivshmem_vdev_cfg, .read_vdev_cfg = read_ivshmem_vdev_cfg, }; #endif