/*- * Copyright (c) 2011 NetApp, Inc. * Copyright (c) 2018 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include "vpci_priv.h" /** * @brief get bar's full base address in 64-bit * @pre (pci_get_bar_type(bars[idx].reg.value) == PCIBAR_MEM64) ? ((idx + 1U) < nr_bars) : (idx < nr_bars) * For 64-bit MMIO bar, its lower 32-bits base address and upper 32-bits base are combined * into one 64-bit base address */ static uint64_t pci_bar_2_bar_base(const struct pci_bar *bars, uint32_t nr_bars, uint32_t idx) { uint64_t base = 0UL; uint64_t tmp; const struct pci_bar *bar; enum pci_bar_type type; bar = &bars[idx]; type = pci_get_bar_type(bar->reg.value); switch (type) { case PCIBAR_IO_SPACE: /* IO bar, BITS 31-2 = base address, 4-byte aligned */ base = (uint64_t)(bar->reg.bits.io.base); base <<= 2U; break; case PCIBAR_MEM32: base = (uint64_t)(bar->reg.bits.mem.base); base <<= 4U; break; case PCIBAR_MEM64: if ((idx + 1U) < nr_bars) { const struct pci_bar *next_bar = &bars[idx + 1U]; /* Upper 32-bit of 64-bit bar */ base = (uint64_t)(next_bar->reg.value); base <<= 32U; /* Lower 32-bit of a 64-bit bar (BITS 31-4 = base address, 16-byte aligned) */ tmp = (uint64_t)(bar->reg.bits.mem.base); tmp <<= 4U; base |= tmp; } break; default: /* Nothing to do */ break; } return base; } /** * @brief get vbar's full base address in 64-bit * For 64-bit MMIO bar, its lower 32-bits base address and upper 32-bits base are combined * into one 64-bit base address * @pre vdev != NULL */ static uint64_t get_vbar_base(const struct pci_vdev *vdev, uint32_t idx) { return pci_bar_2_bar_base(&vdev->bar[0], vdev->nr_bars, idx); } /** * @pre vdev != NULL */ void vdev_pt_read_cfg(const struct pci_vdev *vdev, uint32_t offset, uint32_t bytes, uint32_t *val) { /* bar access must be 4 bytes and offset must also be 4 bytes aligned */ if ((bytes == 4U) && ((offset & 0x3U) == 0U)) { *val = pci_vdev_read_cfg(vdev, offset, bytes); } else { *val = ~0U; } } /** * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL */ static void vdev_pt_unmap_mem_vbar(struct pci_vdev *vdev, uint32_t idx) { bool is_msix_table_bar; struct pci_bar *vbar; struct acrn_vm *vm = vdev->vpci->vm; vbar = &vdev->bar[idx]; if (vdev->bar_base_mapped[idx] != 0UL) { ept_del_mr(vm, (uint64_t *)(vm->arch_vm.nworld_eptp), vdev->bar_base_mapped[idx], /* GPA (old vbar) */ vbar->size); vdev->bar_base_mapped[idx] = 0UL; } is_msix_table_bar = (has_msix_cap(vdev) && (idx == vdev->msix.table_bar)); if (is_msix_table_bar) { uint32_t i; uint64_t addr_hi, addr_lo; struct pci_msix *msix = &vdev->msix; /* Mask all table entries */ for (i = 0U; i < msix->table_count; i++) { msix->table_entries[i].vector_control = PCIM_MSIX_VCTRL_MASK; msix->table_entries[i].addr = 0U; msix->table_entries[i].data = 0U; } msix->mmio_hpa = vbar->base_hpa; /* pbar (hpa) */ msix->mmio_size = vbar->size; if (msix->mmio_gpa != 0UL) { addr_lo = msix->mmio_gpa + msix->table_offset; addr_hi = addr_lo + (msix->table_count * MSIX_TABLE_ENTRY_SIZE); addr_lo = round_page_down(addr_lo); addr_hi = round_page_up(addr_hi); unregister_mmio_emulation_handler(vm, addr_lo, addr_hi); msix->mmio_gpa = 0UL; } } } /** * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL */ static void vdev_pt_map_mem_vbar(struct pci_vdev *vdev, uint32_t idx) { bool is_msix_table_bar; struct pci_bar *vbar; uint64_t vbar_base; struct acrn_vm *vm = vdev->vpci->vm; vbar = &vdev->bar[idx]; vbar_base = get_vbar_base(vdev, idx); if (vbar_base != 0UL) { if (ept_is_mr_valid(vm, vbar_base, vbar->size)) { uint64_t hpa = gpa2hpa(vdev->vpci->vm, vbar_base); uint64_t pbar_base = vbar->base_hpa; /* pbar (hpa) */ if (hpa != pbar_base) { ept_add_mr(vm, (uint64_t *)(vm->arch_vm.nworld_eptp), pbar_base, /* HPA (pbar) */ vbar_base, /* GPA (new vbar) */ vbar->size, EPT_WR | EPT_RD | EPT_UNCACHED); } /* Remember the previously mapped MMIO vbar */ vdev->bar_base_mapped[idx] = vbar_base; } else { pr_fatal("%s, %x:%x.%x set invalid bar[%d] address: 0x%llx\n", __func__, vdev->bdf.bits.b, vdev->bdf.bits.d, vdev->bdf.bits.f, idx, vbar_base); } } is_msix_table_bar = (has_msix_cap(vdev) && (idx == vdev->msix.table_bar)); if (is_msix_table_bar) { uint64_t addr_hi, addr_lo; struct pci_msix *msix = &vdev->msix; if (vdev->bar_base_mapped[idx] != 0UL) { addr_lo = vdev->bar_base_mapped[idx] + msix->table_offset; addr_hi = addr_lo + (msix->table_count * MSIX_TABLE_ENTRY_SIZE); addr_lo = round_page_down(addr_lo); addr_hi = round_page_up(addr_hi); register_mmio_emulation_handler(vm, vmsix_table_mmio_access_handler, addr_lo, addr_hi, vdev); ept_del_mr(vm, (uint64_t *)vm->arch_vm.nworld_eptp, addr_lo, addr_hi - addr_lo); msix->mmio_gpa = vdev->bar_base_mapped[idx]; } } } /** * @brief Allow IO bar access * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL */ static void vdev_pt_allow_io_vbar(struct pci_vdev *vdev, uint32_t idx) { struct pci_bar *vbar; uint64_t vbar_base = get_vbar_base(vdev, idx); /* vbar (gpa) */ vbar = &vdev->bar[idx]; /* For SOS, all port IO access is allowed by default, so skip SOS here */ if ((vdev->bar_base_mapped[idx] != vbar_base) && !is_sos_vm(vdev->vpci->vm)) { if (vdev->bar_base_mapped[idx] != 0UL) { deny_guest_pio_access(vdev->vpci->vm, (uint16_t)(vdev->bar_base_mapped[idx]), (uint32_t)(vbar->size)); } allow_guest_pio_access(vdev->vpci->vm, (uint16_t)vbar_base, (uint32_t)(vbar->size)); /* Remember the previously allowed IO vbar base */ vdev->bar_base_mapped[idx] = vbar_base; } } /** * @brief Set the base address portion of the vbar base address register (32-bit) * base: bar value with flags portion masked off * @pre vbar != NULL */ static void set_vbar_base(struct pci_bar *vbar, uint32_t base) { union pci_bar_reg bar_reg; bar_reg.value = base; if (vbar->is_64bit_high) { /* Upper 32-bit of a 64-bit bar does not have the flags portion */ vbar->reg.value = bar_reg.value; } else if (vbar->reg.bits.io.is_io == 1U) { /* IO bar, BITS 31-2 = base address, 4-byte aligned */ vbar->reg.bits.io.base = bar_reg.bits.io.base; } else { /* MMIO bar, BITS 31-4 = base address, 16-byte aligned */ vbar->reg.bits.mem.base = bar_reg.bits.mem.base; } } /** * @pre vdev != NULL */ static void vdev_pt_write_vbar(struct pci_vdev *vdev, uint32_t offset, uint32_t val) { uint32_t idx; uint64_t base; bool bar_update_normal; struct pci_bar *vbar; base = 0UL; idx = (offset - pci_bar_offset(0U)) >> 2U; bar_update_normal = (val != (uint32_t)~0U); vbar = &vdev->bar[idx]; if (vbar->is_64bit_high) { if (idx > 0U) { uint32_t prev_idx = idx - 1U; vdev_pt_unmap_mem_vbar(vdev, prev_idx); base = git_size_masked_bar_base(vdev->bar[prev_idx].size, ((uint64_t)val) << 32U) >> 32U; set_vbar_base(vbar, (uint32_t)base); if (bar_update_normal) { vdev_pt_map_mem_vbar(vdev, prev_idx); } } else { ASSERT(false, "idx for upper 32-bit of the 64-bit bar should be greater than 0!"); } } else { enum pci_bar_type type = pci_get_bar_type(vbar->reg.value); switch (type) { case PCIBAR_IO_SPACE: base = git_size_masked_bar_base(vbar->size, (uint64_t)val) & 0xffffUL; set_vbar_base(vbar, (uint32_t)base); if (bar_update_normal) { vdev_pt_allow_io_vbar(vdev, idx); } break; case PCIBAR_MEM32: vdev_pt_unmap_mem_vbar(vdev, idx); base = git_size_masked_bar_base(vbar->size, (uint64_t)val); set_vbar_base(vbar, (uint32_t)base); if (bar_update_normal) { vdev_pt_map_mem_vbar(vdev, idx); } break; case PCIBAR_MEM64: vdev_pt_unmap_mem_vbar(vdev, idx); base = git_size_masked_bar_base(vbar->size, (uint64_t)val); set_vbar_base(vbar, (uint32_t)base); break; default: /* Nothing to do */ break; } } /* Write the vbar value to corresponding virtualized vbar reg */ pci_vdev_write_cfg_u32(vdev, offset, vbar->reg.value); } /** * @pre vdev != NULL * bar write access must be 4 bytes and offset must also be 4 bytes aligned, it will be dropped otherwise */ void vdev_pt_write_cfg(struct pci_vdev *vdev, uint32_t offset, uint32_t bytes, uint32_t val) { /* bar write access must be 4 bytes and offset must also be 4 bytes aligned */ if ((bytes == 4U) && ((offset & 0x3U) == 0U)) { vdev_pt_write_vbar(vdev, offset, val); } } /** * PCI base address register (bar) virtualization: * * Virtualize the PCI bars (up to 6 bars at byte offset 0x10~0x24 for type 0 PCI device, * 2 bars at byte offset 0x10-0x14 for type 1 PCI device) of the PCI configuration space * header. * * pbar: bar for the physical PCI device (pci_pdev), the value of pbar (hpa) is assigned * by platform firmware during boot. It is assumed a valid hpa is always assigned to a * mmio pbar, hypervisor shall not change the value of a pbar. * * vbar: for each pci_pdev, it has a virtual PCI device (pci_vdev) counterpart. pci_vdev * virtualizes all the bars (called vbars). a vbar can be initialized by hypervisor by * assigning a gpa to it; if vbar has a value of 0 (unassigned), guest may assign * and program a gpa to it. The guest only sees the vbars, it will not see and can * never change the pbars. * * Hypervisor traps guest changes to the mmio vbar (gpa) to establish ept mapping * between vbar(gpa) and pbar(hpa). pbar should always align on 4K boundary. * * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL * @pre vdev->pdev != NULL */ void init_vdev_pt(struct pci_vdev *vdev) { enum pci_bar_type type; uint32_t idx; struct pci_bar *vbar; uint16_t pci_command; uint32_t size32, offset, lo, hi = 0U; union pci_bdf pbdf; uint64_t mask; vdev->nr_bars = vdev->pdev->nr_bars; pbdf.value = vdev->pdev->bdf.value; for (idx = 0U; idx < vdev->nr_bars; idx++) { vbar = &vdev->bar[idx]; offset = pci_bar_offset(idx); lo = pci_pdev_read_cfg(pbdf, offset, 4U); type = pci_get_bar_type(lo); if (type == PCIBAR_NONE) { continue; } mask = (type == PCIBAR_IO_SPACE) ? PCI_BASE_ADDRESS_IO_MASK : PCI_BASE_ADDRESS_MEM_MASK; vbar->base_hpa = (uint64_t)lo & mask; if (type == PCIBAR_MEM64) { hi = pci_pdev_read_cfg(pbdf, offset + 4U, 4U); vbar->base_hpa |= ((uint64_t)hi << 32U); } if (vbar->base_hpa != 0UL) { pci_pdev_write_cfg(pbdf, offset, 4U, ~0U); size32 = pci_pdev_read_cfg(pbdf, offset, 4U); pci_pdev_write_cfg(pbdf, offset, 4U, lo); vbar->size = (uint64_t)size32 & mask; vbar->reg.value = lo; if (is_prelaunched_vm(vdev->vpci->vm)) { lo = (uint32_t)vdev->pci_dev_config->vbar_base[idx]; } if (type == PCIBAR_MEM64) { idx++; offset = pci_bar_offset(idx); pci_pdev_write_cfg(pbdf, offset, 4U, ~0U); size32 = pci_pdev_read_cfg(pbdf, offset, 4U); pci_pdev_write_cfg(pbdf, offset, 4U, hi); vbar->size |= ((uint64_t)size32 << 32U); vbar->size = vbar->size & ~(vbar->size - 1UL); vbar->size = round_page_up(vbar->size); vbar = &vdev->bar[idx]; vbar->is_64bit_high = true; vbar->reg.value = hi; if (is_prelaunched_vm(vdev->vpci->vm)) { hi = (uint32_t)(vdev->pci_dev_config->vbar_base[idx - 1U] >> 32U); } vdev_pt_write_vbar(vdev, pci_bar_offset(idx - 1U), lo); vdev_pt_write_vbar(vdev, pci_bar_offset(idx), hi); } else { vbar->size = vbar->size & ~(vbar->size - 1UL); if (type == PCIBAR_MEM32) { vbar->size = round_page_up(vbar->size); } vdev_pt_write_vbar(vdev, pci_bar_offset(idx), lo); } } } if (is_prelaunched_vm(vdev->vpci->vm)) { pci_command = (uint16_t)pci_pdev_read_cfg(vdev->pdev->bdf, PCIR_COMMAND, 2U); /* Disable INTX */ pci_command |= 0x400U; pci_pdev_write_cfg(vdev->pdev->bdf, PCIR_COMMAND, 2U, pci_command); } }