/*- * Copyright (c) 2011 NetApp, Inc. * Copyright (c) 2018 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include "vpci_priv.h" /** * @pre pi != NULL */ static void pci_cfg_clear_cache(struct pci_addr_info *pi) { pi->cached_bdf.value = 0xFFFFU; pi->cached_reg = 0U; pi->cached_enable = false; } /** * @pre vm != NULL && vcpu != NULL */ static bool pci_cfgaddr_io_read(struct acrn_vm *vm, struct acrn_vcpu *vcpu, uint16_t addr, size_t bytes) { uint32_t val = ~0U; struct acrn_vpci *vpci = &vm->vpci; struct pci_addr_info *pi = &vpci->addr_info; struct pio_request *pio_req = &vcpu->req.reqs.pio; if ((addr == (uint16_t)PCI_CONFIG_ADDR) && (bytes == 4U)) { val = (uint32_t)pi->cached_bdf.value; val <<= 8U; val |= pi->cached_reg; if (pi->cached_enable) { val |= PCI_CFG_ENABLE; } } pio_req->value = val; return true; } /** * @pre vm != NULL */ static bool pci_cfgaddr_io_write(struct acrn_vm *vm, uint16_t addr, size_t bytes, uint32_t val) { struct acrn_vpci *vpci = &vm->vpci; struct pci_addr_info *pi = &vpci->addr_info; if ((addr == (uint16_t)PCI_CONFIG_ADDR) && (bytes == 4U)) { pi->cached_bdf.value = (uint16_t)(val >> 8U); pi->cached_reg = val & PCI_REGMAX; pi->cached_enable = ((val & PCI_CFG_ENABLE) == PCI_CFG_ENABLE); } return true; } static inline bool vpci_is_valid_access_offset(uint32_t offset, uint32_t bytes) { return ((offset & (bytes - 1U)) == 0U); } static inline bool vpci_is_valid_access_byte(uint32_t bytes) { return ((bytes == 1U) || (bytes == 2U) || (bytes == 4U)); } static inline bool vpci_is_valid_access(uint32_t offset, uint32_t bytes) { return (vpci_is_valid_access_byte(bytes) && vpci_is_valid_access_offset(offset, bytes)); } /** * @pre vm != NULL && vcpu != NULL * @pre vm->vm_id < CONFIG_MAX_VM_NUM * @pre (get_vm_config(vm->vm_id)->type == PRE_LAUNCHED_VM) || (get_vm_config(vm->vm_id)->type == SOS_VM) */ static bool pci_cfgdata_io_read(struct acrn_vm *vm, struct acrn_vcpu *vcpu, uint16_t addr, size_t bytes) { struct acrn_vpci *vpci = &vm->vpci; struct pci_addr_info *pi = &vpci->addr_info; uint16_t offset = addr - PCI_CONFIG_DATA; uint32_t val = ~0U; struct acrn_vm_config *vm_config; struct pio_request *pio_req = &vcpu->req.reqs.pio; if (pi->cached_enable) { if (vpci_is_valid_access(pi->cached_reg + offset, bytes)) { vm_config = get_vm_config(vm->vm_id); switch (vm_config->type) { case PRE_LAUNCHED_VM: partition_mode_cfgread(vpci, pi->cached_bdf, pi->cached_reg + offset, bytes, &val); break; case SOS_VM: sharing_mode_cfgread(vpci, pi->cached_bdf, pi->cached_reg + offset, bytes, &val); break; default: ASSERT(false, "Error, pci_cfgdata_io_read should only be called for PRE_LAUNCHED_VM and SOS_VM"); break; } } pci_cfg_clear_cache(pi); } pio_req->value = val; return true; } /** * @pre vm != NULL * @pre vm->vm_id < CONFIG_MAX_VM_NUM * @pre (get_vm_config(vm->vm_id)->type == PRE_LAUNCHED_VM) || (get_vm_config(vm->vm_id)->type == SOS_VM) */ static bool pci_cfgdata_io_write(struct acrn_vm *vm, uint16_t addr, size_t bytes, uint32_t val) { struct acrn_vpci *vpci = &vm->vpci; struct pci_addr_info *pi = &vpci->addr_info; uint16_t offset = addr - PCI_CONFIG_DATA; struct acrn_vm_config *vm_config; if (pi->cached_enable) { if (vpci_is_valid_access(pi->cached_reg + offset, bytes)) { vm_config = get_vm_config(vm->vm_id); switch (vm_config->type) { case PRE_LAUNCHED_VM: partition_mode_cfgwrite(vpci, pi->cached_bdf, pi->cached_reg + offset, bytes, val); break; case SOS_VM: sharing_mode_cfgwrite(vpci, pi->cached_bdf, pi->cached_reg + offset, bytes, val); break; default: ASSERT(false, "Error, pci_cfgdata_io_write should only be called for PRE_LAUNCHED_VM and SOS_VM"); break; } } pci_cfg_clear_cache(pi); } return true; } /** * @pre vm != NULL * @pre vm->vm_id < CONFIG_MAX_VM_NUM */ void vpci_init(struct acrn_vm *vm) { struct acrn_vpci *vpci = &vm->vpci; int32_t ret = -EINVAL; struct vm_io_range pci_cfgaddr_range = { .flags = IO_ATTR_RW, .base = PCI_CONFIG_ADDR, .len = 1U }; struct vm_io_range pci_cfgdata_range = { .flags = IO_ATTR_RW, .base = PCI_CONFIG_DATA, .len = 4U }; struct acrn_vm_config *vm_config; vpci->vm = vm; vm_config = get_vm_config(vm->vm_id); switch (vm_config->type) { case PRE_LAUNCHED_VM: ret = partition_mode_vpci_init(vm); break; case SOS_VM: ret = sharing_mode_vpci_init(vm); break; default: /* Nothing to do for other vm types */ break; } if (ret == 0) { /* * SOS: intercept port CF8 only. * UOS or partition mode: register handler for CF8 only and I/O requests to CF9/CFA/CFB are * not handled by vpci. */ register_pio_emulation_handler(vm, PCI_CFGADDR_PIO_IDX, &pci_cfgaddr_range, pci_cfgaddr_io_read, pci_cfgaddr_io_write); /* Intercept and handle I/O ports CFC -- CFF */ register_pio_emulation_handler(vm, PCI_CFGDATA_PIO_IDX, &pci_cfgdata_range, pci_cfgdata_io_read, pci_cfgdata_io_write); } } /** * @pre vm != NULL * @pre vm->vm_id < CONFIG_MAX_VM_NUM */ void vpci_cleanup(const struct acrn_vm *vm) { struct acrn_vm_config *vm_config; vm_config = get_vm_config(vm->vm_id); switch (vm_config->type) { case PRE_LAUNCHED_VM: partition_mode_vpci_deinit(vm); break; case SOS_VM: sharing_mode_vpci_deinit(vm); break; case POST_LAUNCHED_VM: post_launched_vm_vpci_deinit(vm); break; default: /* Unsupported VM type - Do nothing */ break; } } /** * @pre vdev != NULL */ static inline bool is_hostbridge(const struct pci_vdev *vdev) { return (vdev->vbdf.value == 0U); } /** * @pre bar != NULL */ static inline bool is_valid_bar_type(const struct pci_bar *bar) { return (bar->type == PCIBAR_MEM32) || (bar->type == PCIBAR_MEM64); } /** * @pre bar != NULL */ static inline bool is_valid_bar_size(const struct pci_bar *bar) { return (bar->size > 0UL) && (bar->size <= 0xffffffffU); } /** * Only MMIO is supported and bar size cannot be greater than 4GB * @pre bar != NULL */ static inline bool is_valid_bar(const struct pci_bar *bar) { return (is_valid_bar_type(bar) && is_valid_bar_size(bar)); } /** * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL * @pre vdev->vpci->vm->iommu != NULL */ static void assign_vdev_pt_iommu_domain(const struct pci_vdev *vdev) { int32_t ret; struct acrn_vm *vm = vdev->vpci->vm; ret = move_pt_device(NULL, vm->iommu, (uint8_t)vdev->pdev->bdf.bits.b, (uint8_t)(vdev->pdev->bdf.value & 0xFFU)); if (ret != 0) { panic("failed to assign iommu device!"); } } /** * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL * @pre vdev->vpci->vm->iommu != NULL */ static void remove_vdev_pt_iommu_domain(const struct pci_vdev *vdev) { int32_t ret; struct acrn_vm *vm = vdev->vpci->vm; ret = move_pt_device(vm->iommu, NULL, (uint8_t)vdev->pdev->bdf.bits.b, (uint8_t)(vdev->pdev->bdf.value & 0xFFU)); if (ret != 0) { /* *TODO * panic needs to be removed here * Currently unassign_pt_device can fail for multiple reasons * Once all the reasons and methods to avoid them can be made sure * panic here is not necessary. */ panic("failed to unassign iommu device!"); } } /** * @pre vdev != NULL */ static void partition_mode_pdev_init(struct pci_vdev *vdev, union pci_bdf pbdf) { struct pci_pdev *pdev; uint32_t idx; struct pci_bar *pbar, *vbar; uint16_t pci_command; pdev = find_pci_pdev(pbdf); ASSERT(pdev != NULL, "pdev is NULL"); vdev->pdev = pdev; /* Sanity checking for vbar */ for (idx = 0U; idx < (uint32_t)PCI_BAR_COUNT; idx++) { pbar = &vdev->pdev->bar[idx]; vbar = &vdev->bar[idx]; if (is_valid_bar(pbar)) { vbar->size = (pbar->size < 0x1000U) ? 0x1000U : pbar->size; vbar->type = PCIBAR_MEM32; } else { /* Mark this vbar as invalid */ vbar->size = 0UL; vbar->type = PCIBAR_NONE; } } pci_command = (uint16_t)pci_pdev_read_cfg(vdev->pdev->bdf, PCIR_COMMAND, 2U); /* Disable INTX */ pci_command |= 0x400U; pci_pdev_write_cfg(vdev->pdev->bdf, PCIR_COMMAND, 2U, pci_command); assign_vdev_pt_iommu_domain(vdev); } /** * @pre vm != NULL * @pre vm->vpci.pci_vdev_cnt <= CONFIG_MAX_PCI_DEV_NUM * @pre vm->iommu == NULL * @pre vm->arch_vm.nworld_eptp != NULL */ int32_t partition_mode_vpci_init(struct acrn_vm *vm) { struct acrn_vpci *vpci = (struct acrn_vpci *)&(vm->vpci); struct pci_vdev *vdev; struct acrn_vm_config *vm_config = get_vm_config(vm->vm_id); struct acrn_vm_pci_ptdev_config *ptdev_config; uint32_t i; vm->iommu = create_iommu_domain(vm->vm_id, hva2hpa(vm->arch_vm.nworld_eptp), 48U); vpci->pci_vdev_cnt = vm_config->pci_ptdev_num; for (i = 0U; i < vpci->pci_vdev_cnt; i++) { vdev = &vpci->pci_vdevs[i]; vdev->vpci = vpci; ptdev_config = &vm_config->pci_ptdevs[i]; vdev->vbdf.value = ptdev_config->vbdf.value; if (is_hostbridge(vdev)) { vdev_hostbridge_init(vdev); } else { partition_mode_pdev_init(vdev, ptdev_config->pbdf); vmsi_init(vdev); vmsix_init(vdev); } } return 0; } /** * @pre vm != NULL * @pre vm->vpci.pci_vdev_cnt <= CONFIG_MAX_PCI_DEV_NUM */ void partition_mode_vpci_deinit(const struct acrn_vm *vm) { struct pci_vdev *vdev; uint32_t i; for (i = 0U; i < vm->vpci.pci_vdev_cnt; i++) { vdev = (struct pci_vdev *) &(vm->vpci.pci_vdevs[i]); if (is_hostbridge(vdev)) { vdev_hostbridge_deinit(vdev); } else { remove_vdev_pt_iommu_domain(vdev); vmsi_deinit(vdev); vmsix_deinit(vdev); } } } /** * @pre vpci != NULL */ void partition_mode_cfgread(const struct acrn_vpci *vpci, union pci_bdf vbdf, uint32_t offset, uint32_t bytes, uint32_t *val) { struct pci_vdev *vdev = pci_find_vdev_by_vbdf(vpci, vbdf); if (vdev != NULL) { if (is_hostbridge(vdev)) { (void)vdev_hostbridge_cfgread(vdev, offset, bytes, val); } else { if ((vdev_pt_cfgread(vdev, offset, bytes, val) != 0) && (vmsi_cfgread(vdev, offset, bytes, val) != 0) && (vmsix_cfgread(vdev, offset, bytes, val) != 0) ) { /* Not handled by any handlers, passthru to physical device */ *val = pci_pdev_read_cfg(vdev->pdev->bdf, offset, bytes); } } } } /** * @pre vpci != NULL */ void partition_mode_cfgwrite(const struct acrn_vpci *vpci, union pci_bdf vbdf, uint32_t offset, uint32_t bytes, uint32_t val) { struct pci_vdev *vdev = pci_find_vdev_by_vbdf(vpci, vbdf); if (vdev != NULL) { if (is_hostbridge(vdev)) { (void)vdev_hostbridge_cfgwrite(vdev, offset, bytes, val); } else { if ((vdev_pt_cfgwrite(vdev, offset, bytes, val) != 0) && (vmsi_cfgwrite(vdev, offset, bytes, val) != 0) && (vmsix_cfgwrite(vdev, offset, bytes, val) != 0) ) { /* Not handled by any handlers, passthru to physical device */ pci_pdev_write_cfg(vdev->pdev->bdf, offset, bytes, val); } } } } static struct pci_vdev *sharing_mode_find_vdev_sos(union pci_bdf pbdf) { struct acrn_vm *vm; vm = get_sos_vm(); return pci_find_vdev_by_pbdf(&vm->vpci, pbdf); } /** * @pre vpci != NULL */ void sharing_mode_cfgread(__unused struct acrn_vpci *vpci, union pci_bdf bdf, uint32_t offset, uint32_t bytes, uint32_t *val) { struct pci_vdev *vdev = sharing_mode_find_vdev_sos(bdf); *val = ~0U; /* vdev == NULL: Could be hit for PCI enumeration from guests */ if (vdev != NULL) { if ((vmsi_cfgread(vdev, offset, bytes, val) != 0) && (vmsix_cfgread(vdev, offset, bytes, val) != 0) ) { /* Not handled by any handlers, passthru to physical device */ *val = pci_pdev_read_cfg(vdev->pdev->bdf, offset, bytes); } } } /** * @pre vpci != NULL */ void sharing_mode_cfgwrite(__unused struct acrn_vpci *vpci, union pci_bdf bdf, uint32_t offset, uint32_t bytes, uint32_t val) { struct pci_vdev *vdev = sharing_mode_find_vdev_sos(bdf); if (vdev != NULL) { if ((vmsi_cfgwrite(vdev, offset, bytes, val) != 0) && (vmsix_cfgwrite(vdev, offset, bytes, val) != 0) ) { /* Not handled by any handlers, passthru to physical device */ pci_pdev_write_cfg(vdev->pdev->bdf, offset, bytes, val); } } } /** * @pre pdev != NULL * @pre vm != NULL * @pre vm->vpci.pci_vdev_cnt <= CONFIG_MAX_PCI_DEV_NUM */ static void init_vdev_for_pdev(struct pci_pdev *pdev, const void *vm) { struct pci_vdev *vdev = NULL; struct acrn_vpci *vpci = &(((struct acrn_vm *)vm)->vpci); if (vpci->pci_vdev_cnt < CONFIG_MAX_PCI_DEV_NUM) { vdev = &vpci->pci_vdevs[vpci->pci_vdev_cnt]; vpci->pci_vdev_cnt++; vdev->vpci = vpci; /* vbdf equals to pbdf otherwise remapped */ vdev->vbdf = pdev->bdf; vdev->pdev = pdev; vmsi_init(vdev); vmsix_init(vdev); if (has_msix_cap(vdev)) { vdev_pt_remap_msix_table_bar(vdev); } assign_vdev_pt_iommu_domain(vdev); } } /** * @pre vm != NULL * @pre is_sos_vm(vm) == true * @pre vm->iommu == NULL * @pre vm->arch_vm.nworld_eptp != NULL */ int32_t sharing_mode_vpci_init(struct acrn_vm *vm) { vm->iommu = create_iommu_domain(vm->vm_id, hva2hpa(vm->arch_vm.nworld_eptp), 48U); /* Build up vdev array for sos_vm */ pci_pdev_foreach(init_vdev_for_pdev, vm); return 0; } /** * @pre vm != NULL * @pre vm->vpci.pci_vdev_cnt <= CONFIG_MAX_PCI_DEV_NUM * @pre is_sos_vm(vm) == true */ void sharing_mode_vpci_deinit(const struct acrn_vm *vm) { struct pci_vdev *vdev; uint32_t i; for (i = 0U; i < vm->vpci.pci_vdev_cnt; i++) { vdev = (struct pci_vdev *)&(vm->vpci.pci_vdevs[i]); remove_vdev_pt_iommu_domain(vdev); vmsi_deinit(vdev); vmsix_deinit(vdev); } } /** * @pre vm != NULL * @pre vm->vpci.pci_vdev_cnt <= CONFIG_MAX_PCI_DEV_NUM * @pre is_postlaunched_vm(vm) == true */ void post_launched_vm_vpci_deinit(const struct acrn_vm *vm) { struct acrn_vm *sos_vm; uint32_t i; struct pci_vdev *vdev; int32_t ret; /* PCI resources * 1) IOMMU domain switch * 2) Relese UOS MSI host IRQ/IRTE * 3) Update vdev info in SOS vdev * Cleanup mentioned above is taken care when DM releases UOS resources * during a UOS reboot or shutdown * In the following cases, where DM does not get chance to cleanup * 1) DM crash/segfault * 2) SOS triple fault/hang * 3) SOS reboot before shutting down POST_LAUNCHED_VMs * ACRN must cleanup */ sos_vm = get_sos_vm(); for (i = 0U; i < sos_vm->vpci.pci_vdev_cnt; i++) { vdev = (struct pci_vdev *)&(sos_vm->vpci.pci_vdevs[i]); if (vdev->vpci->vm == vm) { ret = move_pt_device(vm->iommu, sos_vm->iommu, (uint8_t)vdev->pdev->bdf.bits.b, (uint8_t)(vdev->pdev->bdf.value & 0xFFU)); if (ret != 0) { panic("failed to assign iommu device!"); } vmsi_deinit(vdev); vmsix_deinit(vdev); /* Move vdev pointers back to SOS*/ vdev->vpci = (struct acrn_vpci *) &sos_vm->vpci; /* vbdf equals to pbdf in sos */ vdev->vbdf.value = vdev->pdev->bdf.value; } } } /** * @pre target_vm != NULL */ void vpci_set_ptdev_intr_info(const struct acrn_vm *target_vm, uint16_t vbdf, uint16_t pbdf) { struct pci_vdev *vdev; union pci_bdf bdf; bdf.value = pbdf; vdev = sharing_mode_find_vdev_sos(bdf); if (vdev == NULL) { pr_err("%s, can't find PCI device for vm%d, vbdf (0x%x) pbdf (0x%x)", __func__, target_vm->vm_id, vbdf, pbdf); } else { /* UOS may do BDF mapping */ vdev->vpci = (struct acrn_vpci *)&(target_vm->vpci); vdev->vbdf.value = vbdf; vdev->pdev->bdf.value = pbdf; } } /** * @pre target_vm != NULL */ void vpci_reset_ptdev_intr_info(const struct acrn_vm *target_vm, uint16_t vbdf, uint16_t pbdf) { struct pci_vdev *vdev; struct acrn_vm *vm; union pci_bdf bdf; bdf.value = pbdf; vdev = sharing_mode_find_vdev_sos(bdf); if (vdev == NULL) { pr_err("%s, can't find PCI device for vm%d, vbdf (0x%x) pbdf (0x%x)", __func__, target_vm->vm_id, vbdf, pbdf); } else { /* Return this PCI device to SOS */ if (vdev->vpci->vm == target_vm) { vm = get_sos_vm(); vdev->vpci = &vm->vpci; /* vbdf equals to pbdf in sos */ vdev->vbdf.value = vdev->pdev->bdf.value; } } }