/* * Copyright (C) 2018-2024 Intel Corporation. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include /** * @addtogroup hwmgmt_page * * @{ */ /** * @file * @brief Implementation page table management. * * This file implements the external APIs to establish, modify, delete, or look for the mapping information. It also * defines some helper functions to implement the features that are commonly used in this file. * */ #define DBG_LEVEL_MMU 6U /** * @brief Host physical address of the sanitized page. * * The sanitized page is used to mitigate l1tf. This variable is used to store the host physical address of the * sanitized page. */ static uint64_t sanitized_page_hpa; static void sanitize_pte_entry(uint64_t *ptep, const struct pgtable *table) { set_pgentry(ptep, sanitized_page_hpa, table); } static void sanitize_pte(uint64_t *pt_page, const struct pgtable *table) { uint64_t i; for (i = 0UL; i < PTRS_PER_PTE; i++) { sanitize_pte_entry(pt_page + i, table); } } /** * @brief Initializes a sanitized page. * * This function is responsible for initializing a sanitized page. It sets the page table entries in this sanitized page * to point to the host physical address of the sanitized page itself. * * The static variable 'sanitized_page_hpa' will be set and the `sanitized_page` will be initialized. * * @param[out] sanitized_page The page to be sanitized. * @param[in] hpa The host physical address that the page table entries in the sanitized page will point to. * * @return None * * @pre sanitized_page != NULL * @pre ((uint64_t)sanitized_page & (PAGE_SIZE - 1)) == 0x0U * @pre hpa != 0U * @pre (hpa & (PAGE_SIZE - 1)) == 0x0U * * @post N/A */ void init_sanitized_page(uint64_t *sanitized_page, uint64_t hpa) { uint64_t i; sanitized_page_hpa = hpa; /* set ptep in sanitized_page point to itself */ for (i = 0UL; i < PTRS_PER_PTE; i++) { *(sanitized_page + i) = sanitized_page_hpa; } } static void try_to_free_pgtable_page(const struct pgtable *table, uint64_t *pde, uint64_t *pt_page, uint32_t type) { if (type == MR_DEL) { uint64_t index; for (index = 0UL; index < PTRS_PER_PTE; index++) { uint64_t *pte = pt_page + index; if (pgentry_present(table, (*pte))) { break; } } if (index == PTRS_PER_PTE) { free_page(table->pool, (void *)pt_page); sanitize_pte_entry(pde, table); } } } /* * Split a large page table into next level page table. * * @pre: level could only IA32E_PDPT or IA32E_PD */ static void split_large_page(uint64_t *pte, enum _page_table_level level, __unused uint64_t vaddr, const struct pgtable *table) { uint64_t *pbase; uint64_t ref_paddr, paddr, paddrinc; uint64_t i, ref_prot; switch (level) { case IA32E_PDPT: ref_paddr = (*pte) & PDPTE_PFN_MASK; paddrinc = PDE_SIZE; ref_prot = (*pte) & ~PDPTE_PFN_MASK; break; default: /* IA32E_PD */ ref_paddr = (*pte) & PDE_PFN_MASK; paddrinc = PTE_SIZE; ref_prot = (*pte) & ~PDE_PFN_MASK; ref_prot &= ~PAGE_PSE; table->recover_exe_right(&ref_prot); break; } pbase = (uint64_t *)alloc_page(table->pool); dev_dbg(DBG_LEVEL_MMU, "%s, paddr: 0x%lx, pbase: 0x%lx\n", __func__, ref_paddr, pbase); paddr = ref_paddr; for (i = 0UL; i < PTRS_PER_PTE; i++) { set_pgentry(pbase + i, paddr | ref_prot, table); paddr += paddrinc; } ref_prot = table->default_access_right; set_pgentry(pte, hva2hpa((void *)pbase) | ref_prot, table); /* TODO: flush the TLB */ } static inline void local_modify_or_del_pte(uint64_t *pte, uint64_t prot_set, uint64_t prot_clr, uint32_t type, const struct pgtable *table) { if (type == MR_MODIFY) { uint64_t new_pte = *pte; new_pte &= ~prot_clr; new_pte |= prot_set; set_pgentry(pte, new_pte, table); } else { sanitize_pte_entry(pte, table); } } /* * pgentry may means pml4e/pdpte/pde */ static inline void construct_pgentry(uint64_t *pde, void *pd_page, uint64_t prot, const struct pgtable *table) { sanitize_pte((uint64_t *)pd_page, table); set_pgentry(pde, hva2hpa(pd_page) | prot, table); } /* * In PT level, * type: MR_MODIFY * modify [vaddr_start, vaddr_end) memory type or page access right. * type: MR_DEL * delete [vaddr_start, vaddr_end) MT PT mapping */ static void modify_or_del_pte(uint64_t *pde, uint64_t vaddr_start, uint64_t vaddr_end, uint64_t prot_set, uint64_t prot_clr, const struct pgtable *table, uint32_t type) { uint64_t *pt_page = pde_page_vaddr(*pde); uint64_t vaddr = vaddr_start; uint64_t index = pte_index(vaddr); dev_dbg(DBG_LEVEL_MMU, "%s, vaddr: [0x%lx - 0x%lx]\n", __func__, vaddr, vaddr_end); for (; index < PTRS_PER_PTE; index++) { uint64_t *pte = pt_page + index; if (!pgentry_present(table, (*pte))) { /*suppress warning message for low memory (< 1MBytes),as service VM * will update MTTR attributes for this region by default whether it * is present or not. */ if ((type == MR_MODIFY) && (vaddr >= MEM_1M)) { pr_warn("%s, vaddr: 0x%lx pte is not present.\n", __func__, vaddr); } } else { local_modify_or_del_pte(pte, prot_set, prot_clr, type, table); } vaddr += PTE_SIZE; if (vaddr >= vaddr_end) { break; } } try_to_free_pgtable_page(table, pde, pt_page, type); } /* * In PD level, * type: MR_MODIFY * modify [vaddr_start, vaddr_end) memory type or page access right. * type: MR_DEL * delete [vaddr_start, vaddr_end) MT PT mapping */ static void modify_or_del_pde(uint64_t *pdpte, uint64_t vaddr_start, uint64_t vaddr_end, uint64_t prot_set, uint64_t prot_clr, const struct pgtable *table, uint32_t type) { uint64_t *pd_page = pdpte_page_vaddr(*pdpte); uint64_t vaddr = vaddr_start; uint64_t index = pde_index(vaddr); dev_dbg(DBG_LEVEL_MMU, "%s, vaddr: [0x%lx - 0x%lx]\n", __func__, vaddr, vaddr_end); for (; index < PTRS_PER_PDE; index++) { uint64_t *pde = pd_page + index; uint64_t vaddr_next = (vaddr & PDE_MASK) + PDE_SIZE; if (!pgentry_present(table, (*pde))) { if (type == MR_MODIFY) { pr_warn("%s, addr: 0x%lx pde is not present.\n", __func__, vaddr); } } else { if (pde_large(*pde) != 0UL) { if ((vaddr_next > vaddr_end) || (!mem_aligned_check(vaddr, PDE_SIZE))) { split_large_page(pde, IA32E_PD, vaddr, table); } else { local_modify_or_del_pte(pde, prot_set, prot_clr, type, table); if (vaddr_next < vaddr_end) { vaddr = vaddr_next; continue; } break; /* done */ } } modify_or_del_pte(pde, vaddr, vaddr_end, prot_set, prot_clr, table, type); } if (vaddr_next >= vaddr_end) { break; /* done */ } vaddr = vaddr_next; } try_to_free_pgtable_page(table, pdpte, pd_page, type); } /* * In PDPT level, * type: MR_MODIFY * modify [vaddr_start, vaddr_end) memory type or page access right. * type: MR_DEL * delete [vaddr_start, vaddr_end) MT PT mapping */ static void modify_or_del_pdpte(const uint64_t *pml4e, uint64_t vaddr_start, uint64_t vaddr_end, uint64_t prot_set, uint64_t prot_clr, const struct pgtable *table, uint32_t type) { uint64_t *pdpt_page = pml4e_page_vaddr(*pml4e); uint64_t vaddr = vaddr_start; uint64_t index = pdpte_index(vaddr); dev_dbg(DBG_LEVEL_MMU, "%s, vaddr: [0x%lx - 0x%lx]\n", __func__, vaddr, vaddr_end); for (; index < PTRS_PER_PDPTE; index++) { uint64_t *pdpte = pdpt_page + index; uint64_t vaddr_next = (vaddr & PDPTE_MASK) + PDPTE_SIZE; if (!pgentry_present(table, (*pdpte))) { if (type == MR_MODIFY) { pr_warn("%s, vaddr: 0x%lx pdpte is not present.\n", __func__, vaddr); } } else { if (pdpte_large(*pdpte) != 0UL) { if ((vaddr_next > vaddr_end) || (!mem_aligned_check(vaddr, PDPTE_SIZE))) { split_large_page(pdpte, IA32E_PDPT, vaddr, table); } else { local_modify_or_del_pte(pdpte, prot_set, prot_clr, type, table); if (vaddr_next < vaddr_end) { vaddr = vaddr_next; continue; } break; /* done */ } } modify_or_del_pde(pdpte, vaddr, vaddr_end, prot_set, prot_clr, table, type); } if (vaddr_next >= vaddr_end) { break; /* done */ } vaddr = vaddr_next; } } /** * @brief Modify or delete the mappings associated with the specified address range. * * This function modifies the properties of an existing mapping or deletes it entirely from the page table. The input * address range is specified by [vaddr_base, vaddr_base + size). It is used when changing the access permissions of a * memory region or when freeing a previously mapped region. This operation is critical for dynamic memory management, * allowing the system to adapt to changes in memory usage patterns or to reclaim resources. * * For error case behaviors: * - If the 'type' is MR_MODIFY and any page referenced by the PML4E in the specified address range is not present, the * function asserts that the operation is invalid. * For normal case behaviors(when the error case conditions are not satisfied): * - If any page referenced by the PDPTE/PDE/PTE in the specified address range is not present, there is no change to * the corresponding mapping and it continues the operation. * - If any PDPTE/PDE in the specified address range maps a large page and the large page address exceeds the specified * address range, the function splits the large page into next level page to allow for the modification or deletion of * the mappings and the execute right will be recovered by the callback function table->recover_exe_right() when a 2MB * page is split to 4KB pages. * - If the 'type' is MR_MODIFY, the function modifies the properties of the existing mapping to match the specified * properties. * - If the 'type' is MR_DEL, the function will set corresponding page table entries to point to the sanitized page. * * @param[inout] pml4_page A pointer to the specified PML4 table. * @param[in] vaddr_base The specified input address determining the start of the input address range whose mapping * information is to be updated. * For hypervisor's MMU, it is the host virtual address. * For each VM's EPT, it is the guest physical address. * @param[in] size The size of the specified input address range whose mapping information is to be updated. * @param[in] prot_set Bit positions representing the specified properties which need to be set. * Bits specified by prot_clr are cleared before each bit specified by prot_set is set to 1. * @param[in] prot_clr Bit positions representing the specified properties which need to be cleared. * Bits specified by prot_clr are cleared before each bit specified by prot_set is set to 1. * @param[in] table A pointer to the struct pgtable containing the information of the specified memory operations. * @param[in] type The type of operation to perform (MR_MODIFY or MR_DEL). * * @return None * * @pre pml4_page != NULL * @pre table != NULL * @pre (type == MR_MODIFY) || (type == MR_DEL) * @pre For x86 hypervisor, the following conditions shall be met if "type == MR_MODIFY". * - (prot_set & ~(PAGE_RW | PAGE_USER | PAGE_PWT | PAGE_PCD | PAGE_ACCESSED | PAGE_DIRTY | PAGE_PSE | PAGE_GLOBAL * | PAGE_PAT_LARGE | PAGE_NX) == 0) * - (prot_clr & ~(PAGE_RW | PAGE_USER | PAGE_PWT | PAGE_PCD | PAGE_ACCESSED | PAGE_DIRTY | PAGE_PSE | PAGE_GLOBAL * | PAGE_PAT_LARGE | PAGE_NX) == 0) * @pre For the VM EPT mappings, the following conditions shall be met if "type == MR_MODIFY". * - (prot_set & ~(EPT_RD | EPT_WR | EPT_EXE | EPT_MT_MASK) == 0) * - (prot_set & EPT_MT_MASK) == EPT_UNCACHED || (prot_set & EPT_MT_MASK) == EPT_WC || * (prot_set & EPT_MT_MASK) == EPT_WT || (prot_set & EPT_MT_MASK) == EPT_WP || (prot_set & EPT_MT_MASK) == EPT_WB * - (prot_clr & ~(EPT_RD | EPT_WR | EPT_EXE | EPT_MT_MASK) == 0) * - (prot_clr & EPT_MT_MASK) == EPT_UNCACHED || (prot_clr & EPT_MT_MASK) == EPT_WC || * (prot_clr & EPT_MT_MASK) == EPT_WT || (prot_clr & EPT_MT_MASK) == EPT_WP || (prot_clr & EPT_MT_MASK) == EPT_WB * * @post N/A * * @remark N/A */ void pgtable_modify_or_del_map(uint64_t *pml4_page, uint64_t vaddr_base, uint64_t size, uint64_t prot_set, uint64_t prot_clr, const struct pgtable *table, uint32_t type) { uint64_t vaddr = round_page_up(vaddr_base); uint64_t vaddr_next, vaddr_end; uint64_t *pml4e; vaddr_end = vaddr + round_page_down(size); dev_dbg(DBG_LEVEL_MMU, "%s, vaddr: 0x%lx, size: 0x%lx\n", __func__, vaddr, size); while (vaddr < vaddr_end) { vaddr_next = (vaddr & PML4E_MASK) + PML4E_SIZE; pml4e = pml4e_offset(pml4_page, vaddr); if ((!pgentry_present(table, (*pml4e))) && (type == MR_MODIFY)) { ASSERT(false, "invalid op, pml4e not present"); } else { modify_or_del_pdpte(pml4e, vaddr, vaddr_end, prot_set, prot_clr, table, type); vaddr = vaddr_next; } } } /* * In PT level, * add [vaddr_start, vaddr_end) to [paddr_base, ...) MT PT mapping */ static void add_pte(const uint64_t *pde, uint64_t paddr_start, uint64_t vaddr_start, uint64_t vaddr_end, uint64_t prot, const struct pgtable *table) { uint64_t *pt_page = pde_page_vaddr(*pde); uint64_t vaddr = vaddr_start; uint64_t paddr = paddr_start; uint64_t index = pte_index(vaddr); dev_dbg(DBG_LEVEL_MMU, "%s, paddr: 0x%lx, vaddr: [0x%lx - 0x%lx]\n", __func__, paddr, vaddr_start, vaddr_end); for (; index < PTRS_PER_PTE; index++) { uint64_t *pte = pt_page + index; if (pgentry_present(table, (*pte))) { pr_fatal("%s, pte 0x%lx is already present!\n", __func__, vaddr); } else { set_pgentry(pte, paddr | prot, table); } paddr += PTE_SIZE; vaddr += PTE_SIZE; if (vaddr >= vaddr_end) { break; /* done */ } } } /* * In PD level, * add [vaddr_start, vaddr_end) to [paddr_base, ...) MT PT mapping */ static void add_pde(const uint64_t *pdpte, uint64_t paddr_start, uint64_t vaddr_start, uint64_t vaddr_end, uint64_t prot, const struct pgtable *table) { uint64_t *pd_page = pdpte_page_vaddr(*pdpte); uint64_t vaddr = vaddr_start; uint64_t paddr = paddr_start; uint64_t index = pde_index(vaddr); uint64_t local_prot = prot; dev_dbg(DBG_LEVEL_MMU, "%s, paddr: 0x%lx, vaddr: [0x%lx - 0x%lx]\n", __func__, paddr, vaddr, vaddr_end); for (; index < PTRS_PER_PDE; index++) { uint64_t *pde = pd_page + index; uint64_t vaddr_next = (vaddr & PDE_MASK) + PDE_SIZE; if (pde_large(*pde) != 0UL) { pr_fatal("%s, pde 0x%lx is already present!\n", __func__, vaddr); } else { if (!pgentry_present(table, (*pde))) { if (table->large_page_support(IA32E_PD, prot) && mem_aligned_check(paddr, PDE_SIZE) && mem_aligned_check(vaddr, PDE_SIZE) && (vaddr_next <= vaddr_end)) { table->tweak_exe_right(&local_prot); set_pgentry(pde, paddr | (local_prot | PAGE_PSE), table); if (vaddr_next < vaddr_end) { paddr += (vaddr_next - vaddr); vaddr = vaddr_next; continue; } break; /* done */ } else { void *pt_page = alloc_page(table->pool); construct_pgentry(pde, pt_page, table->default_access_right, table); } } add_pte(pde, paddr, vaddr, vaddr_end, prot, table); } if (vaddr_next >= vaddr_end) { break; /* done */ } paddr += (vaddr_next - vaddr); vaddr = vaddr_next; } } /* * In PDPT level, * add [vaddr_start, vaddr_end) to [paddr_base, ...) MT PT mapping */ static void add_pdpte(const uint64_t *pml4e, uint64_t paddr_start, uint64_t vaddr_start, uint64_t vaddr_end, uint64_t prot, const struct pgtable *table) { uint64_t *pdpt_page = pml4e_page_vaddr(*pml4e); uint64_t vaddr = vaddr_start; uint64_t paddr = paddr_start; uint64_t index = pdpte_index(vaddr); uint64_t local_prot = prot; dev_dbg(DBG_LEVEL_MMU, "%s, paddr: 0x%lx, vaddr: [0x%lx - 0x%lx]\n", __func__, paddr, vaddr, vaddr_end); for (; index < PTRS_PER_PDPTE; index++) { uint64_t *pdpte = pdpt_page + index; uint64_t vaddr_next = (vaddr & PDPTE_MASK) + PDPTE_SIZE; if (pdpte_large(*pdpte) != 0UL) { pr_fatal("%s, pdpte 0x%lx is already present!\n", __func__, vaddr); } else { if (!pgentry_present(table, (*pdpte))) { if (table->large_page_support(IA32E_PDPT, prot) && mem_aligned_check(paddr, PDPTE_SIZE) && mem_aligned_check(vaddr, PDPTE_SIZE) && (vaddr_next <= vaddr_end)) { table->tweak_exe_right(&local_prot); set_pgentry(pdpte, paddr | (local_prot | PAGE_PSE), table); if (vaddr_next < vaddr_end) { paddr += (vaddr_next - vaddr); vaddr = vaddr_next; continue; } break; /* done */ } else { void *pd_page = alloc_page(table->pool); construct_pgentry(pdpte, pd_page, table->default_access_right, table); } } add_pde(pdpte, paddr, vaddr, vaddr_end, prot, table); } if (vaddr_next >= vaddr_end) { break; /* done */ } paddr += (vaddr_next - vaddr); vaddr = vaddr_next; } } /** * @brief Add new page table mappings. * * This function maps a virtual address range specified by [vaddr_base, vaddr_base + size) to a physical address range * starting from 'paddr_base'. * * - If any subrange within [vaddr_base, vaddr_base + size) is already mapped, there is no change to the corresponding * mapping and it continues the operation. * - When a new 1GB or 2MB mapping is established, the callback function table->tweak_exe_right() is invoked to tweak * the execution bit. * - When a new page table referenced by a new PDPTE/PDE is created, all entries in the page table are initialized to * point to the sanitized page by default. * - Finally, the new mappings are established and initialized according to the specified address range and properties. * * @param[inout] pml4_page A pointer to the specified PML4 table hierarchy. * @param[in] paddr_base The specified physical address determining the start of the physical memory region. * It is the host physical address. * @param[in] vaddr_base The specified input address determining the start of the input address space. * For hypervisor's MMU, it is the host virtual address. * For each VM's EPT, it is the guest physical address. * @param[in] size The size of the specified input address space. * @param[in] prot Bit positions representing the specified properties which need to be set. * @param[in] table A pointer to the struct pgtable containing the information of the specified memory operations. * * @return None * * @pre pml4_page != NULL * @pre Any subrange within [vaddr_base, vaddr_base + size) shall already be unmapped. * @pre For x86 hypervisor mapping, the following condition shall be met. * - prot & ~(PAGE_PRESENT| PAGE_RW | PAGE_USER | PAGE_PWT | PAGE_PCD | PAGE_ACCESSED | PAGE_DIRTY | PAGE_PSE | * PAGE_GLOBAL | PAGE_PAT_LARGE | PAGE_NX) == 0 * @pre For VM EPT mapping, the following conditions shall be met. * - prot & ~(EPT_RD | EPT_WR | EPT_EXE | EPT_MT_MASK | EPT_IGNORE_PAT) == 0 * - (prot & EPT_MT_MASK) == EPT_UNCACHED || (prot & EPT_MT_MASK) == EPT_WC || (prot & EPT_MT_MASK) == EPT_WT || * (prot & EPT_MT_MASK) == EPT_WP || (prot & EPT_MT_MASK) == EPT_WB * @pre table != NULL * * @post N/A * * @remark N/A */ void pgtable_add_map(uint64_t *pml4_page, uint64_t paddr_base, uint64_t vaddr_base, uint64_t size, uint64_t prot, const struct pgtable *table) { uint64_t vaddr, vaddr_next, vaddr_end; uint64_t paddr; uint64_t *pml4e; dev_dbg(DBG_LEVEL_MMU, "%s, paddr 0x%lx, vaddr 0x%lx, size 0x%lx\n", __func__, paddr_base, vaddr_base, size); /* align address to page size*/ vaddr = round_page_up(vaddr_base); paddr = round_page_up(paddr_base); vaddr_end = vaddr + round_page_down(size); while (vaddr < vaddr_end) { vaddr_next = (vaddr & PML4E_MASK) + PML4E_SIZE; pml4e = pml4e_offset(pml4_page, vaddr); if (!pgentry_present(table, (*pml4e))) { void *pdpt_page = alloc_page(table->pool); construct_pgentry(pml4e, pdpt_page, table->default_access_right, table); } add_pdpte(pml4e, paddr, vaddr, vaddr_end, prot, table); paddr += (vaddr_next - vaddr); vaddr = vaddr_next; } } /** * @brief Create a new root page table. * * This function initializes and returns a new root page table. It is typically used during the setup of a new execution * context, such as initializing a hypervisor PML4 table or creating a virtual machine. The root page table is essential * for defining the virtual memory layout for the context. * * It creates a new root page table and every entries in the page table are initialized to point to the sanitized page. * Finally, the function returns the root page table pointer. * * @param[in] table A pointer to the struct pgtable containing the information of the specified memory operations. * * @return A pointer to the newly created root page table. * * @pre table != NULL * * @post N/A */ void *pgtable_create_root(const struct pgtable *table) { uint64_t *page = (uint64_t *)alloc_page(table->pool); sanitize_pte(page, table); return page; } /** * @brief Create a root page table for Secure World. * * This function initializes a new root page table for Secure World. It is intended to be used during the initialization * phase of Trusty, setting up isolated memory regions for secure execution. Secure world can access Normal World's * memory, but Normal World cannot access Secure World's memory. The PML4T/PDPT for Secure World are separated from * Normal World. PDT/PT are shared in both Secure World's EPT and Normal World's EPT. So this function copies the PDPTEs * from the Normal World to the Secure World. * * - It creates a new root page table and every entries are initialized to point to the sanitized page by default. * - The access right specified by prot_clr is cleared for Secure World PDPTEs. * - Finally, the function returns the new root page table pointer. * * @param[in] table A pointer to the struct pgtable containing the information of the specified memory operations. * @param[in] nworld_pml4_page A pointer to pml4 table hierarchy in Normal World. * @param[in] prot_table_present Mask indicating the page referenced is present. * @param[in] prot_clr Bit positions representing the specified properties which need to be cleared. * * @return A pointer to the newly created root page table for Secure World. * * @pre table != NULL * @pre nworld_pml4_page != NULL * * @post N/A */ void *pgtable_create_trusty_root(const struct pgtable *table, void *nworld_pml4_page, uint64_t prot_table_present, uint64_t prot_clr) { uint16_t i; uint64_t pdpte, *dest_pdpte_p, *src_pdpte_p; uint64_t nworld_pml4e, sworld_pml4e; void *sub_table_addr, *pml4_base; /* Copy PDPT entries from Normal world to Secure world * Secure world can access Normal World's memory, * but Normal World can not access Secure World's memory. * The PML4/PDPT for Secure world are separated from * Normal World. PD/PT are shared in both Secure world's EPT * and Normal World's EPT */ pml4_base = pgtable_create_root(table); /* The trusty memory is remapped to guest physical address * of gpa_rebased to gpa_rebased + size */ sub_table_addr = alloc_page(table->pool); sworld_pml4e = hva2hpa(sub_table_addr) | prot_table_present; set_pgentry((uint64_t *)pml4_base, sworld_pml4e, table); nworld_pml4e = get_pgentry((uint64_t *)nworld_pml4_page); /* * copy PTPDEs from normal world EPT to secure world EPT, * and remove execute access attribute in these entries */ dest_pdpte_p = pml4e_page_vaddr(sworld_pml4e); src_pdpte_p = pml4e_page_vaddr(nworld_pml4e); for (i = 0U; i < (uint16_t)(PTRS_PER_PDPTE - 1UL); i++) { pdpte = get_pgentry(src_pdpte_p); if ((pdpte & prot_table_present) != 0UL) { pdpte &= ~prot_clr; set_pgentry(dest_pdpte_p, pdpte, table); } src_pdpte_p++; dest_pdpte_p++; } return pml4_base; } /** * @brief Look for the paging-structure entry that contains the mapping information for the specified input address. * * This function looks for the paging-structure entry that contains the mapping information for the specified input * address of the translation process. It is used to search the page table hierarchy for the entry corresponding to the * given virtual address. The function traverses the page table hierarchy from the PML4 down to the appropriate page * table level, returning the entry if found. * * - If specified address is mapped in the page table hierarchy, it will return a pointer to the page table entry that * maps the specified address. * - If the specified address is not mapped in the page table hierarchy, it will return NULL. * * @param[in] pml4_page A pointer to the specified PML4 table hierarchy. * @param[in] addr The specified input address whose mapping information is to be searched. * For hypervisor's MMU, it is the host virtual address. * For each VM's EPT, it is the guest physical address. * @param[out] pg_size A pointer to the size of the page controlled by the returned paging-structure entry. * @param[in] table A pointer to the struct pgtable which provides the page pool and callback functions to be used when * creating the new page. * * @return A pointer to the paging-structure entry that maps the specified input address. * * @retval non-NULL There is a paging-structure entry that contains the mapping information for the specified input * address. * @retval NULL There is no paging-structure entry that contains the mapping information for the specified input * address. * * @pre pml4_page != NULL * @pre pg_size != NULL * @pre table != NULL * * @post N/A * * @remark N/A */ const uint64_t *pgtable_lookup_entry(uint64_t *pml4_page, uint64_t addr, uint64_t *pg_size, const struct pgtable *table) { const uint64_t *pret = NULL; bool present = true; uint64_t *pml4e, *pdpte, *pde, *pte; pml4e = pml4e_offset(pml4_page, addr); present = pgentry_present(table, (*pml4e)); if (present) { pdpte = pdpte_offset(pml4e, addr); present = pgentry_present(table, (*pdpte)); if (present) { if (pdpte_large(*pdpte) != 0UL) { *pg_size = PDPTE_SIZE; pret = pdpte; } else { pde = pde_offset(pdpte, addr); present = pgentry_present(table, (*pde)); if (present) { if (pde_large(*pde) != 0UL) { *pg_size = PDE_SIZE; pret = pde; } else { pte = pte_offset(pde, addr); present = pgentry_present(table, (*pte)); if (present) { *pg_size = PTE_SIZE; pret = pte; } } } } } } return pret; } /** * @} */