/* * FIPS-180-2 compliant SHA-256 implementation * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * Copyright (C) 2018, Intel Corporation, All Rights Reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf */ #include "md.h" #include "sha256.h" static const uint32_t k[] = { 0x428A2F98U, 0x71374491U, 0xB5C0FBCFU, 0xE9B5DBA5U, 0x3956C25BU, 0x59F111F1U, 0x923F82A4U, 0xAB1C5ED5U, 0xD807AA98U, 0x12835B01U, 0x243185BEU, 0x550C7DC3U, 0x72BE5D74U, 0x80DEB1FEU, 0x9BDC06A7U, 0xC19BF174U, 0xE49B69C1U, 0xEFBE4786U, 0x0FC19DC6U, 0x240CA1CCU, 0x2DE92C6FU, 0x4A7484AAU, 0x5CB0A9DCU, 0x76F988DAU, 0x983E5152U, 0xA831C66DU, 0xB00327C8U, 0xBF597FC7U, 0xC6E00BF3U, 0xD5A79147U, 0x06CA6351U, 0x14292967U, 0x27B70A85U, 0x2E1B2138U, 0x4D2C6DFCU, 0x53380D13U, 0x650A7354U, 0x766A0ABBU, 0x81C2C92EU, 0x92722C85U, 0xA2BFE8A1U, 0xA81A664BU, 0xC24B8B70U, 0xC76C51A3U, 0xD192E819U, 0xD6990624U, 0xF40E3585U, 0x106AA070U, 0x19A4C116U, 0x1E376C08U, 0x2748774CU, 0x34B0BCB5U, 0x391C0CB3U, 0x4ED8AA4AU, 0x5B9CCA4FU, 0x682E6FF3U, 0x748F82EEU, 0x78A5636FU, 0x84C87814U, 0x8CC70208U, 0x90BEFFFAU, 0xA4506CEBU, 0xBEF9A3F7U, 0xC67178F2U, }; /** * @brief get unsinged int value for big endian. * * @param[in] b pointer to data which is NON-NULL */ static inline uint32_t get_uint32_be(const uint8_t *b, uint32_t i) { uint32_t n; n = ((uint32_t) (*(b + i)) << 24) | ((uint32_t) (*(b + i + 1U)) << 16) | ((uint32_t) (*(b + i + 2U)) << 8) | ((uint32_t) (*(b + i + 3U))); return n; } /** * @brief put unsinged int value for big endian. * @param[inout] b pointer to data which is NON-NULL */ static inline void put_unint32_be(uint32_t n, uint8_t *b, uint32_t i) { *(b + i) = (uint8_t) (n >> 24); *(b + i + 1U) = (uint8_t) (n >> 16); *(b + i + 2U) = (uint8_t) (n >> 8); *(b + i + 3U) = (uint8_t) n; } static inline uint32_t shr(uint32_t x, uint8_t n) { return ((x & 0xFFFFFFFFU) >> n); } static inline uint32_t rotr(uint32_t x, uint8_t n) { return (shr(x, n) | (x << (32U - n))); } static inline uint32_t sigma0(uint32_t x) { return (rotr(x, 7U) ^ rotr(x, 18U) ^ shr(x, 3U)); } static inline uint32_t sigma1(uint32_t x) { return (rotr(x, 17U) ^ rotr(x, 19U) ^ shr(x, 10U)); } static inline uint32_t sigma2(uint32_t x) { return (rotr(x, 2U) ^ rotr(x, 13U) ^ rotr(x, 22U)); } static inline uint32_t sigma3(uint32_t x) { return (rotr(x, 6U) ^ rotr(x, 11U) ^ rotr(x, 25U)); } static inline uint32_t majority(uint32_t x, uint32_t y, uint32_t z) { return ((x & y) | (z & (x | y))); } static inline uint32_t choice_alg(uint32_t x, uint32_t y, uint32_t z) { return (z ^ (x & (y ^ z))); } static inline void decomposition(uint32_t *w, uint32_t i) { *(w + i) = sigma1(*(w + i - (2U))) + *(w + i - (7U)) + sigma0(*(w + i - (15U))) + *(w + i - (16U)); } /** * @brief Part of compress. * * @param[inout] d and h are NON-null pointer */ static inline void hash_computation( uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t x, uint32_t j) { uint32_t temp1, temp2; temp1 = *h + sigma3(e) + choice_alg(e, f, g) + j + x; temp2 = sigma2(a) + majority(a, b, c); *d += temp1; *h = temp1 + temp2; } void mbedtls_sha256_init(mbedtls_sha256_context *ctx) { (void)memset(ctx, 0U, sizeof(mbedtls_sha256_context)); } void mbedtls_sha256_free(mbedtls_sha256_context *ctx) { if (ctx != NULL) { (void)mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha256_context)); } } void mbedtls_sha256_clone(mbedtls_sha256_context *dst, const mbedtls_sha256_context *src) { *dst = *src; } /* * SHA-256 context setup */ int32_t mbedtls_sha256_starts_ret(mbedtls_sha256_context *ctx, int32_t is224) { ctx->total[0] = 0U; ctx->total[1] = 0U; if (is224 == 0) { /* SHA-256 */ ctx->state[0] = 0x6A09E667U; ctx->state[1] = 0xBB67AE85U; ctx->state[2] = 0x3C6EF372U; ctx->state[3] = 0xA54FF53AU; ctx->state[4] = 0x510E527FU; ctx->state[5] = 0x9B05688CU; ctx->state[6] = 0x1F83D9ABU; ctx->state[7] = 0x5BE0CD19U; } else { /* SHA-224 */ ctx->state[0] = 0xC1059ED8U; ctx->state[1] = 0x367CD507U; ctx->state[2] = 0x3070DD17U; ctx->state[3] = 0xF70E5939U; ctx->state[4] = 0xFFC00B31U; ctx->state[5] = 0x68581511U; ctx->state[6] = 0x64F98FA7U; ctx->state[7] = 0xBEFA4FA4U; } ctx->is224 = is224; return 0; } int32_t mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx, const uint8_t data[64]) { uint32_t w[64]; uint32_t a[8]; uint32_t i; for (i = 0U; i < 8U; i++) { a[i] = ctx->state[i]; } for (i = 0U; i < 16U; i++) { w[i] = get_uint32_be(data, 4 * i); } for (i = 0U; i < 16U; i += 8U) { hash_computation(a[0], a[1], a[2], &a[3], a[4], a[5], a[6], &a[7], w[i + 0U], k[i + 0U]); hash_computation(a[7], a[0], a[1], &a[2], a[3], a[4], a[5], &a[6], w[i + 1U], k[i + 1U]); hash_computation(a[6], a[7], a[0], &a[1], a[2], a[3], a[4], &a[5], w[i + 2U], k[i + 2U]); hash_computation(a[5], a[6], a[7], &a[0], a[1], a[2], a[3], &a[4], w[i + 3U], k[i + 3U]); hash_computation(a[4], a[5], a[6], &a[7], a[0], a[1], a[2], &a[3], w[i + 4U], k[i + 4U]); hash_computation(a[3], a[4], a[5], &a[6], a[7], a[0], a[1], &a[2], w[i + 5U], k[i + 5U]); hash_computation(a[2], a[3], a[4], &a[5], a[6], a[7], a[0], &a[1], w[i + 6U], k[i + 6U]); hash_computation(a[1], a[2], a[3], &a[4], a[5], a[6], a[7], &a[0], w[i + 7U], k[i + 7U]); } for (i = 16U; i < 64U; i += 8U) { decomposition(w, (i + 0U)); hash_computation(a[0], a[1], a[2], &a[3], a[4], a[5], a[6], &a[7], w[i + 0U], k[i + 0U]); decomposition(w, (i + 1U)); hash_computation(a[7], a[0], a[1], &a[2], a[3], a[4], a[5], &a[6], w[i + 1U], k[i + 1U]); decomposition(w, (i + 2U)); hash_computation(a[6], a[7], a[0], &a[1], a[2], a[3], a[4], &a[5], w[i + 2U], k[i + 2U]); decomposition(w, (i + 3U)); hash_computation(a[5], a[6], a[7], &a[0], a[1], a[2], a[3], &a[4], w[i + 3U], k[i + 3U]); decomposition(w, (i + 4U)); hash_computation(a[4], a[5], a[6], &a[7], a[0], a[1], a[2], &a[3], w[i + 4U], k[i + 4U]); decomposition(w, (i + 5U)); hash_computation(a[3], a[4], a[5], &a[6], a[7], a[0], a[1], &a[2], w[i + 5U], k[i + 5U]); decomposition(w, (i + 6U)); hash_computation(a[2], a[3], a[4], &a[5], a[6], a[7], a[0], &a[1], w[i + 6U], k[i + 6U]); decomposition(w, (i + 7U)); hash_computation(a[1], a[2], a[3], &a[4], a[5], a[6], a[7], &a[0], w[i + 7U], k[i + 7U]); } for (i = 0U; i < 8U; i++) { ctx->state[i] += a[i]; } return 0; } /* * SHA-256 process buffer */ int32_t mbedtls_sha256_update_ret(mbedtls_sha256_context *ctx, const uint8_t *input, size_t ilen) { int32_t ret = 0; size_t fill; uint32_t left; const uint8_t *data = input; size_t len = ilen; if ((len != 0U) && (data != NULL)) { left = ctx->total[0] & 0x3FU; fill = 64U - left; ctx->total[0] += (uint32_t)len; ctx->total[0] &= 0xFFFFFFFFU; if (ctx->total[0] < (uint32_t)len) { ctx->total[1]++; } if ((left != 0U) && (len >= fill)) { (void)memcpy_s((void *)&ctx->buffer[left], fill, data, fill); ret = mbedtls_internal_sha256_process(ctx, ctx->buffer); if (ret == 0) { data += fill; len -= fill; left = 0U; } } if (ret == 0) { while (len >= 64U) { ret = mbedtls_internal_sha256_process(ctx, data); if (ret == 0) { data += 64; len -= 64U; break; } } if (ret == 0) { if (len > 0U) { (void)memcpy_s((void *)&ctx->buffer[left], len, data, len); } } } } return ret; } /* * SHA-256 final digest */ int32_t mbedtls_sha256_finish_ret(mbedtls_sha256_context *ctx, uint8_t output[32]) { int32_t ret = 0; uint32_t used; uint32_t high, low; /* * Add padding: 0x80 then 0x00 until 8 bytes remain for the length */ used = ctx->total[0] & 0x3FU; ctx->buffer[used] = 0x80U; used++; if (used <= 56U) { /* Enough room for padding + length in current block */ (void)memset((void *)&ctx->buffer[used], 0U, 56U - used); } else { /* We'll need an extra block */ (void)memset((void *)&ctx->buffer[used], 0U, 64U - used); ret = mbedtls_internal_sha256_process(ctx, ctx->buffer); if (ret == 0) { (void)memset(ctx->buffer, 0U, 56U); } } /* * Add message length */ if (ret == 0) { high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); put_unint32_be(high, ctx->buffer, 56); put_unint32_be(low, ctx->buffer, 60); ret = mbedtls_internal_sha256_process(ctx, ctx->buffer); if (ret == 0) { /* * Output final state */ put_unint32_be(ctx->state[0], output, 0); put_unint32_be(ctx->state[1], output, 4); put_unint32_be(ctx->state[2], output, 8); put_unint32_be(ctx->state[3], output, 12); put_unint32_be(ctx->state[4], output, 16); put_unint32_be(ctx->state[5], output, 20); put_unint32_be(ctx->state[6], output, 24); if (ctx->is224 == 0) { put_unint32_be(ctx->state[7], output, 28); } } } return ret; } /* * output = SHA-256(input buffer) */ int32_t mbedtls_sha256_ret(const uint8_t *input, size_t ilen, uint8_t output[32], int32_t is224) { int32_t ret = 0; mbedtls_sha256_context ctx; mbedtls_sha256_init(&ctx); ret = mbedtls_sha256_starts_ret(&ctx, is224); if (ret == 0) { ret = mbedtls_sha256_update_ret(&ctx, input, ilen); } if (ret == 0) { ret = mbedtls_sha256_finish_ret(&ctx, output); } mbedtls_sha256_free(&ctx); return ret; }