/*- * Copyright (c) 2011 NetApp, Inc. * Copyright (c) 2018 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include "vpci_priv.h" /** * @brief get bar's full base address in 64-bit * @pre idx < nr_bars * For 64-bit MMIO bar, its lower 32-bits base address and upper 32-bits base are combined * into one 64-bit base address */ static uint64_t pci_bar_2_bar_base(const struct pci_bar *pbars, uint32_t nr_bars, uint32_t idx) { uint64_t base = 0UL; uint64_t tmp; const struct pci_bar *bar; bar = &pbars[idx]; if (bar->is_64bit_high) { ASSERT(idx > 0U, "idx for upper 32-bit of the 64-bit bar should be greater than 0!"); if (idx > 0U) { const struct pci_bar *prev_bar = &pbars[idx - 1U]; /* Upper 32-bit of 64-bit bar (does not have flags portion) */ base = (uint64_t)(bar->reg.value); base <<= 32U; /* Lower 32-bit of a 64-bit bar (BITS 31-4 = base address, 16-byte aligned) */ tmp = (uint64_t)(prev_bar->reg.bits.mem.base); tmp <<= 4U; base |= tmp; } } else { enum pci_bar_type type = pci_get_bar_type(bar->reg.value); switch (type) { case PCIBAR_IO_SPACE: /* IO bar, BITS 31-2 = base address, 4-byte aligned */ base = (uint64_t)(bar->reg.bits.io.base); base <<= 2U; break; case PCIBAR_MEM32: base = (uint64_t)(bar->reg.bits.mem.base); base <<= 4U; break; case PCIBAR_MEM64: ASSERT((idx + 1U) < nr_bars, "idx for upper 32-bit of the 64-bit bar is out of range!"); if ((idx + 1U) < nr_bars) { const struct pci_bar *next_bar = &pbars[idx + 1U]; /* Upper 32-bit of 64-bit bar */ base = (uint64_t)(next_bar->reg.value); base <<= 32U; /* Lower 32-bit of a 64-bit bar (BITS 31-4 = base address, 16-byte aligned) */ tmp = (uint64_t)(bar->reg.bits.mem.base); tmp <<= 4U; base |= tmp; } break; default: /* Nothing to do */ break; } } return base; } /** * @brief get vbar's full base address in 64-bit * For 64-bit MMIO bar, its lower 32-bits base address and upper 32-bits base are combined * into one 64-bit base address * @pre vdev != NULL */ static uint64_t get_vbar_base(const struct pci_vdev *vdev, uint32_t idx) { return pci_bar_2_bar_base(&vdev->bar[0], vdev->nr_bars, idx); } /** * @brief get pbar's full address in 64-bit * For 64-bit MMIO bar, its lower 32-bits base address and upper 32-bits base are combined * into one 64-bit base address * @pre pdev != NULL */ static uint64_t get_pbar_base(const struct pci_pdev *pdev, uint32_t idx) { return pci_bar_2_bar_base(&pdev->bar[0], pdev->nr_bars, idx); } /** * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL */ int32_t vdev_pt_read_cfg(const struct pci_vdev *vdev, uint32_t offset, uint32_t bytes, uint32_t *val) { int32_t ret = -ENODEV; if (is_prelaunched_vm(vdev->vpci->vm) && is_bar_offset(vdev->nr_bars, offset)) { *val = pci_vdev_read_cfg(vdev, offset, bytes); ret = 0; } return ret; } /** * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL * @pre vdev->pdev != NULL * @pre vdev->pdev->msix.table_bar < vdev->nr_bars */ void vdev_pt_remap_msix_table_bar(struct pci_vdev *vdev) { uint32_t i; uint64_t addr_hi, addr_lo; struct pci_msix *msix = &vdev->msix; struct pci_pdev *pdev = vdev->pdev; struct pci_bar *pbar; ASSERT(vdev->pdev->msix.table_bar < vdev->nr_bars, "msix->table_bar is out of range"); /* Mask all table entries */ for (i = 0U; i < msix->table_count; i++) { msix->table_entries[i].vector_control = PCIM_MSIX_VCTRL_MASK; msix->table_entries[i].addr = 0U; msix->table_entries[i].data = 0U; } pbar = &pdev->bar[msix->table_bar]; if (pbar != NULL) { uint64_t pbar_base = get_pbar_base(pdev, msix->table_bar); /* pbar (hpa) */ msix->mmio_hpa = pbar_base; if (is_prelaunched_vm(vdev->vpci->vm)) { msix->mmio_gpa = get_vbar_base(vdev, msix->table_bar); } else { msix->mmio_gpa = sos_vm_hpa2gpa(pbar_base); } msix->mmio_size = pbar->size; } /* * For SOS: * -------- * MSI-X Table BAR Contains: * Other Info + Tables + PBA Other info already mapped into EPT (since SOS) * Tables are handled by HV MMIO handler (4k adjusted up and down) * and remaps interrupts * PBA already mapped into EPT (since SOS) * * Other Info + Tables Other info already mapped into EPT (since SOS) * Tables are handled by HV MMIO handler (4k adjusted up and down) * and remaps interrupts * * Tables Tables are handled by HV MMIO handler (4k adjusted up and down) * and remaps interrupts * * For UOS (launched by DM): * ------------------------- * MSI-X Table BAR Contains: * Other Info + Tables + PBA Other info mapped into EPT (4k adjusted) by DM * Tables are handled by DM MMIO handler (4k adjusted up and down) and SOS writes to tables, * intercepted by HV MMIO handler and HV remaps interrupts * PBA already mapped into EPT by DM * * Other Info + Tables Other info mapped into EPT by DM * Tables are handled by DM MMIO handler (4k adjusted up and down) and SOS writes to tables, * intercepted by HV MMIO handler and HV remaps interrupts. * * Tables Tables are handled by DM MMIO handler (4k adjusted up and down) and SOS writes to tables, * intercepted by HV MMIO handler and HV remaps interrupts. * * For Pre-launched VMs (no SOS/DM): * -------------------------------- * MSI-X Table BAR Contains: * All 3 cases: Writes to MMIO region in MSI-X Table BAR handled by HV MMIO handler * If the offset falls within the MSI-X table [offset, offset+tables_size), HV remaps * interrupts. * Else, HV writes/reads to/from the corresponding HPA */ if (msix->mmio_gpa != 0UL) { if (is_prelaunched_vm(vdev->vpci->vm)) { addr_hi = msix->mmio_gpa + msix->mmio_size; addr_lo = msix->mmio_gpa; } else { /* * PCI Spec: a BAR may also map other usable address space that is not associated * with MSI-X structures, but it must not share any naturally aligned 4 KB * address range with one where either MSI-X structure resides. * The MSI-X Table and MSI-X PBA are permitted to co-reside within a naturally * aligned 4 KB address range. * * If PBA or others reside in the same BAR with MSI-X Table, devicemodel could * emulate them and maps these memory range at the 4KB boundary. Here, we should * make sure only intercept the minimum number of 4K pages needed for MSI-X table. */ /* The higher boundary of the 4KB aligned address range for MSI-X table */ addr_hi = msix->mmio_gpa + msix->table_offset + (msix->table_count * MSIX_TABLE_ENTRY_SIZE); addr_hi = round_page_up(addr_hi); /* The lower boundary of the 4KB aligned address range for MSI-X table */ addr_lo = round_page_down(msix->mmio_gpa + msix->table_offset); } if (vdev->bar_base_mapped[msix->table_bar] != addr_lo) { register_mmio_emulation_handler(vdev->vpci->vm, vmsix_table_mmio_access_handler, addr_lo, addr_hi, vdev); /* Remember the previously registered MMIO vbar base */ vdev->bar_base_mapped[msix->table_bar] = addr_lo; } } } /** * @brief Remaps guest MMIO BARs other than MSI-x Table BAR * This API is invoked upon guest re-programming PCI BAR with MMIO region * after a new vbar is set. * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL */ static void vdev_pt_remap_generic_mem_vbar(struct pci_vdev *vdev, uint32_t idx) { struct acrn_vm *vm = vdev->vpci->vm; uint64_t vbar_base = get_vbar_base(vdev, idx); /* vbar (gpa) */ /* If the old vbar is mapped before, unmap it first */ if (vdev->bar_base_mapped[idx] != 0UL) { ept_del_mr(vm, (uint64_t *)(vm->arch_vm.nworld_eptp), vdev->bar_base_mapped[idx], /* GPA (old vbar) */ vdev->bar[idx].size); vdev->bar_base_mapped[idx] = 0UL; } /* If a new vbar is set (nonzero), set the EPT mapping accordingly */ if (vbar_base != 0UL) { uint64_t pbar_base = get_pbar_base(vdev->pdev, idx); /* pbar (hpa) */ /* Map the physical BAR in the guest MMIO space */ ept_add_mr(vm, (uint64_t *)(vm->arch_vm.nworld_eptp), pbar_base, /* HPA (pbar) */ vbar_base, /* GPA (new vbar) */ vdev->bar[idx].size, EPT_WR | EPT_RD | EPT_UNCACHED); /* Remember the previously mapped MMIO vbar */ vdev->bar_base_mapped[idx] = vbar_base; } } /** * @brief Set the base address portion of the vbar base address register (32-bit) * base: bar value with flags portion masked off * @pre vbar != NULL */ static void set_vbar_base(struct pci_bar *vbar, uint32_t base) { union pci_bar_reg bar_reg; bar_reg.value = base; if (vbar->is_64bit_high) { /* Upper 32-bit of a 64-bit bar does not have the flags portion */ vbar->reg.value = bar_reg.value; } else if (vbar->reg.bits.io.is_io == 1U) { /* IO bar, BITS 31-2 = base address, 4-byte aligned */ vbar->reg.bits.io.base = bar_reg.bits.io.base; } else { /* MMIO bar, BITS 31-4 = base address, 16-byte aligned */ vbar->reg.bits.mem.base = bar_reg.bits.mem.base; } } /** * @pre vdev != NULL * @pre (vdev->bar[idx].type == PCIBAR_NONE) || (vdev->bar[idx].type == PCIBAR_MEM32) */ static void vdev_pt_write_vbar(struct pci_vdev *vdev, uint32_t offset, uint32_t val) { uint32_t idx; uint32_t base, mask; bool bar_update_normal; bool is_msix_table_bar; base = 0U; idx = (offset - pci_bar_offset(0U)) >> 2U; mask = ~(vdev->bar[idx].size - 1U); switch (vdev->bar[idx].type) { case PCIBAR_NONE: vdev->bar[idx].base = 0UL; break; case PCIBAR_MEM32: bar_update_normal = (val != (uint32_t)~0U); is_msix_table_bar = (has_msix_cap(vdev) && (idx == vdev->msix.table_bar)); base = val & mask; set_vbar_base(&vdev->bar[idx], base); if (bar_update_normal) { if (is_msix_table_bar) { vdev->bar[idx].base = base; vdev_pt_remap_msix_table_bar(vdev); } else { vdev_pt_remap_generic_mem_vbar(vdev, idx); vdev->bar[idx].base = base; } } break; default: /* Should never reach here, init_vdev_pt() only sets vbar type to PCIBAR_NONE and PCIBAR_MEM32 */ break; } /* Write the vbar value to corresponding virtualized vbar reg */ pci_vdev_write_cfg_u32(vdev, offset, vdev->bar[idx].reg.value); } /** * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL * bar write access must be 4 bytes and offset must also be 4 bytes aligned, it will be dropped otherwise */ int32_t vdev_pt_write_cfg(struct pci_vdev *vdev, uint32_t offset, uint32_t bytes, uint32_t val) { int32_t ret = -ENODEV; /* bar write access must be 4 bytes and offset must also be 4 bytes aligned */ if (is_prelaunched_vm(vdev->vpci->vm) && is_bar_offset(vdev->nr_bars, offset) && (bytes == 4U) && ((offset & 0x3U) == 0U)) { vdev_pt_write_vbar(vdev, offset, val); ret = 0; } return ret; } /** * For bar emulation, currently only MMIO is supported and bar size cannot be greater than 4GB * @pre bar != NULL */ static inline bool is_bar_supported(const struct pci_bar *bar) { return (is_mmio_bar(bar) && is_valid_bar_size(bar)); } /** * PCI base address register (bar) virtualization: * * Virtualize the PCI bars (up to 6 bars at byte offset 0x10~0x24 for type 0 PCI device, * 2 bars at byte offset 0x10-0x14 for type 1 PCI device) of the PCI configuration space * header. * * pbar: bar for the physical PCI device (pci_pdev), the value of pbar (hpa) is assigned * by platform firmware during boot. It is assumed a valid hpa is always assigned to a * mmio pbar, hypervisor shall not change the value of a pbar. * * vbar: for each pci_pdev, it has a virtual PCI device (pci_vdev) counterpart. pci_vdev * virtualizes all the bars (called vbars). a vbar can be initialized by hypervisor by * assigning a gpa to it; if vbar has a value of 0 (unassigned), guest may assign * and program a gpa to it. The guest only sees the vbars, it will not see and can * never change the pbars. * * Hypervisor traps guest changes to the mmio vbar (gpa) to establish ept mapping * between vbar(gpa) and pbar(hpa). pbar should always align on 4K boundary. * * @pre vdev != NULL * @pre vdev->vpci != NULL * @pre vdev->vpci->vm != NULL * @pre vdev->pdev != NULL */ void init_vdev_pt(struct pci_vdev *vdev) { uint32_t idx; struct pci_bar *pbar, *vbar; uint16_t pci_command; vdev->nr_bars = vdev->pdev->nr_bars; ASSERT(vdev->nr_bars > 0U, "vdev->nr_bars should be greater than 0!"); if (is_prelaunched_vm(vdev->vpci->vm)) { for (idx = 0U; idx < vdev->nr_bars; idx++) { pbar = &vdev->pdev->bar[idx]; vbar = &vdev->bar[idx]; vbar->base = 0UL; if (is_bar_supported(pbar)) { vbar->reg.value = pbar->reg.value; vbar->reg.bits.mem.base = 0x0U; /* clear vbar base */ if (vbar->reg.bits.mem.type == 0x2U) { /* Clear vbar 64-bit flag and set it to 32-bit */ vbar->reg.bits.mem.type = 0x0U; } /** * If vbar->base is 0 (unassigned), Linux kernel will reprogram the vbar on * its bar size boundary, so in order to ensure the MMIO vbar allocated by guest * is 4k aligned, set its size to be 4K aligned. */ vbar->size = round_page_up(pbar->size); /** * Only 32-bit bar is supported for now so both PCIBAR_MEM32 and PCIBAR_MEM64 * are reported to guest as PCIBAR_MEM32 */ vbar->type = PCIBAR_MEM32; /* Set the new vbar base */ if (vdev->ptdev_config->vbar[idx] != 0UL) { vdev_pt_write_vbar(vdev, pci_bar_offset(idx), (uint32_t)(vdev->ptdev_config->vbar[idx])); } } else { vbar->reg.value = 0x0U; vbar->size = 0UL; vbar->type = PCIBAR_NONE; } } pci_command = (uint16_t)pci_pdev_read_cfg(vdev->pdev->bdf, PCIR_COMMAND, 2U); /* Disable INTX */ pci_command |= 0x400U; pci_pdev_write_cfg(vdev->pdev->bdf, PCIR_COMMAND, 2U, pci_command); } }