acrn-hypervisor/hypervisor/arch/x86/guest/instr_emul.c
Binbin Wu 9e7179c950 hv: support gva2gpa in different paging modes
Translate gva2gpa in different paging modes.
Change the definition of gva2gpa.
- return value for error status
- Add a parameter for error code when paging fault.
Change the definition of vm_gva2gpa.
- return value for error status
- Add a parameter for error code when paing fault.

Signed-off-by: Binbin Wu <binbin.wu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Xu, Anthony <anthony.xu@intel.com>
2018-06-01 19:14:13 +08:00

2148 lines
48 KiB
C

/*-
* Copyright (c) 2012 Sandvine, Inc.
* Copyright (c) 2012 NetApp, Inc.
* Copyright (c) 2017 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <hypervisor.h>
#include "instr_emul_wrapper.h"
#include "instr_emul.h"
/* struct vie_op.op_type */
enum {
VIE_OP_TYPE_NONE = 0,
VIE_OP_TYPE_MOV,
VIE_OP_TYPE_MOVSX,
VIE_OP_TYPE_MOVZX,
VIE_OP_TYPE_AND,
VIE_OP_TYPE_OR,
VIE_OP_TYPE_SUB,
VIE_OP_TYPE_TWO_BYTE,
VIE_OP_TYPE_PUSH,
VIE_OP_TYPE_CMP,
VIE_OP_TYPE_POP,
VIE_OP_TYPE_MOVS,
VIE_OP_TYPE_GROUP1,
VIE_OP_TYPE_STOS,
VIE_OP_TYPE_BITTEST,
VIE_OP_TYPE_TEST,
VIE_OP_TYPE_LAST
};
/* struct vie_op.op_flags */
#define VIE_OP_F_IMM (1 << 0) /* 16/32-bit immediate operand */
#define VIE_OP_F_IMM8 (1 << 1) /* 8-bit immediate operand */
#define VIE_OP_F_MOFFSET (1 << 2) /* 16/32/64-bit immediate moffset */
#define VIE_OP_F_NO_MODRM (1 << 3)
#define VIE_OP_F_NO_GLA_VERIFICATION (1 << 4)
static const struct vie_op two_byte_opcodes[256] = {
[0xB6] = {
.op_byte = 0xB6,
.op_type = VIE_OP_TYPE_MOVZX,
},
[0xB7] = {
.op_byte = 0xB7,
.op_type = VIE_OP_TYPE_MOVZX,
},
[0xBA] = {
.op_byte = 0xBA,
.op_type = VIE_OP_TYPE_BITTEST,
.op_flags = VIE_OP_F_IMM8,
},
[0xBE] = {
.op_byte = 0xBE,
.op_type = VIE_OP_TYPE_MOVSX,
},
};
static const struct vie_op one_byte_opcodes[256] = {
[0x0F] = {
.op_byte = 0x0F,
.op_type = VIE_OP_TYPE_TWO_BYTE
},
[0x2B] = {
.op_byte = 0x2B,
.op_type = VIE_OP_TYPE_SUB,
},
[0x39] = {
.op_byte = 0x39,
.op_type = VIE_OP_TYPE_CMP,
},
[0x3B] = {
.op_byte = 0x3B,
.op_type = VIE_OP_TYPE_CMP,
},
[0x88] = {
.op_byte = 0x88,
.op_type = VIE_OP_TYPE_MOV,
},
[0x89] = {
.op_byte = 0x89,
.op_type = VIE_OP_TYPE_MOV,
},
[0x8A] = {
.op_byte = 0x8A,
.op_type = VIE_OP_TYPE_MOV,
},
[0x8B] = {
.op_byte = 0x8B,
.op_type = VIE_OP_TYPE_MOV,
},
[0xA1] = {
.op_byte = 0xA1,
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
},
[0xA3] = {
.op_byte = 0xA3,
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
},
[0xA4] = {
.op_byte = 0xA4,
.op_type = VIE_OP_TYPE_MOVS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xA5] = {
.op_byte = 0xA5,
.op_type = VIE_OP_TYPE_MOVS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xAA] = {
.op_byte = 0xAA,
.op_type = VIE_OP_TYPE_STOS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xAB] = {
.op_byte = 0xAB,
.op_type = VIE_OP_TYPE_STOS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xC6] = {
/* XXX Group 11 extended opcode - not just MOV */
.op_byte = 0xC6,
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_IMM8,
},
[0xC7] = {
.op_byte = 0xC7,
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_IMM,
},
[0x23] = {
.op_byte = 0x23,
.op_type = VIE_OP_TYPE_AND,
},
[0x80] = {
/* Group 1 extended opcode */
.op_byte = 0x80,
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM8,
},
[0x81] = {
/* Group 1 extended opcode */
.op_byte = 0x81,
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM,
},
[0x83] = {
/* Group 1 extended opcode */
.op_byte = 0x83,
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM8,
},
[0x84] = {
.op_byte = 0x84,
.op_type = VIE_OP_TYPE_TEST,
},
[0x85] = {
.op_byte = 0x85,
.op_type = VIE_OP_TYPE_TEST,
},
[0x08] = {
.op_byte = 0x08,
.op_type = VIE_OP_TYPE_OR,
},
[0x09] = {
.op_byte = 0x09,
.op_type = VIE_OP_TYPE_OR,
},
[0x8F] = {
/* XXX Group 1A extended opcode - not just POP */
.op_byte = 0x8F,
.op_type = VIE_OP_TYPE_POP,
},
[0xFF] = {
/* XXX Group 5 extended opcode - not just PUSH */
.op_byte = 0xFF,
.op_type = VIE_OP_TYPE_PUSH,
}
};
/* struct vie.mod */
#define VIE_MOD_INDIRECT 0
#define VIE_MOD_INDIRECT_DISP8 1
#define VIE_MOD_INDIRECT_DISP32 2
#define VIE_MOD_DIRECT 3
/* struct vie.rm */
#define VIE_RM_SIB 4
#define VIE_RM_DISP32 5
#define GB (1024 * 1024 * 1024)
static enum vm_reg_name gpr_map[16] = {
VM_REG_GUEST_RAX,
VM_REG_GUEST_RCX,
VM_REG_GUEST_RDX,
VM_REG_GUEST_RBX,
VM_REG_GUEST_RSP,
VM_REG_GUEST_RBP,
VM_REG_GUEST_RSI,
VM_REG_GUEST_RDI,
VM_REG_GUEST_R8,
VM_REG_GUEST_R9,
VM_REG_GUEST_R10,
VM_REG_GUEST_R11,
VM_REG_GUEST_R12,
VM_REG_GUEST_R13,
VM_REG_GUEST_R14,
VM_REG_GUEST_R15
};
static uint64_t size2mask[] = {
[1] = 0xff,
[2] = 0xffff,
[4] = 0xffffffff,
[8] = 0xffffffffffffffff,
};
static int
vie_read_register(struct vcpu *vcpu, enum vm_reg_name reg, uint64_t *rval)
{
int error;
error = vm_get_register(vcpu, reg, rval);
return error;
}
static void
vie_calc_bytereg(struct vie *vie, enum vm_reg_name *reg, int *lhbr)
{
*lhbr = 0;
*reg = gpr_map[vie->reg];
/*
* 64-bit mode imposes limitations on accessing legacy high byte
* registers (lhbr).
*
* The legacy high-byte registers cannot be addressed if the REX
* prefix is present. In this case the values 4, 5, 6 and 7 of the
* 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
*
* If the REX prefix is not present then the values 4, 5, 6 and 7
* of the 'ModRM:reg' field address the legacy high-byte registers,
* %ah, %ch, %dh and %bh respectively.
*/
if (!vie->rex_present) {
if (vie->reg & 0x4) {
*lhbr = 1;
*reg = gpr_map[vie->reg & 0x3];
}
}
}
static int
vie_read_bytereg(struct vcpu *vcpu, struct vie *vie, uint8_t *rval)
{
uint64_t val;
int error, lhbr;
enum vm_reg_name reg;
vie_calc_bytereg(vie, &reg, &lhbr);
error = vm_get_register(vcpu, reg, &val);
/*
* To obtain the value of a legacy high byte register shift the
* base register right by 8 bits (%ah = %rax >> 8).
*/
if (lhbr)
*rval = val >> 8;
else
*rval = val;
return error;
}
static int
vie_write_bytereg(struct vcpu *vcpu, struct vie *vie, uint8_t byte)
{
uint64_t origval, val, mask;
int error, lhbr;
enum vm_reg_name reg;
vie_calc_bytereg(vie, &reg, &lhbr);
error = vm_get_register(vcpu, reg, &origval);
if (error == 0) {
val = byte;
mask = 0xff;
if (lhbr) {
/*
* Shift left by 8 to store 'byte' in a legacy high
* byte register.
*/
val <<= 8;
mask <<= 8;
}
val |= origval & ~mask;
error = vm_set_register(vcpu, reg, val);
}
return error;
}
int
vie_update_register(struct vcpu *vcpu, enum vm_reg_name reg,
uint64_t val, int size)
{
int error;
uint64_t origval;
switch (size) {
case 1:
case 2:
error = vie_read_register(vcpu, reg, &origval);
if (error)
return error;
val &= size2mask[size];
val |= origval & ~size2mask[size];
break;
case 4:
val &= 0xffffffffUL;
break;
case 8:
break;
default:
return -EINVAL;
}
error = vm_set_register(vcpu, reg, val);
return error;
}
#define RFLAGS_STATUS_BITS (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
/*
* Return the status flags that would result from doing (x - y).
*/
#define GETCC(sz) \
static u_long \
getcc##sz(uint##sz##_t x, uint##sz##_t y) \
{ \
u_long rflags; \
\
__asm __volatile("sub %2,%1; pushfq; popq %0" : \
"=r" (rflags), "+r" (x) : "m" (y)); \
return rflags; \
} struct __hack
GETCC(8);
GETCC(16);
GETCC(32);
GETCC(64);
static u_long
getcc(int opsize, uint64_t x, uint64_t y)
{
ASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
"getcc: invalid operand size %d", opsize);
if (opsize == 1)
return getcc8(x, y);
else if (opsize == 2)
return getcc16(x, y);
else if (opsize == 4)
return getcc32(x, y);
else
return getcc64(x, y);
}
static int
emulate_mov(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite,
void *arg)
{
int error, size;
enum vm_reg_name reg;
uint8_t byte;
uint64_t val;
size = vie->opsize;
error = -EINVAL;
switch (vie->op.op_byte) {
case 0x88:
/*
* MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
* 88/r: mov r/m8, r8
* REX + 88/r: mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
*/
size = 1; /* override for byte operation */
error = vie_read_bytereg(vcpu, vie, &byte);
if (error == 0)
error = memwrite(vcpu, gpa, byte, size,
arg);
break;
case 0x89:
/*
* MOV from reg (ModRM:reg) to mem (ModRM:r/m)
* 89/r: mov r/m16, r16
* 89/r: mov r/m32, r32
* REX.W + 89/r mov r/m64, r64
*/
reg = gpr_map[vie->reg];
error = vie_read_register(vcpu, reg, &val);
if (error == 0) {
val &= size2mask[size];
error = memwrite(vcpu, gpa, val, size,
arg);
}
break;
case 0x8A:
/*
* MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
* 8A/r: mov r8, r/m8
* REX + 8A/r: mov r8, r/m8
*/
size = 1; /* override for byte operation */
error = memread(vcpu, gpa, &val, size, arg);
if (error == 0)
error = vie_write_bytereg(vcpu, vie, val);
break;
case 0x8B:
/*
* MOV from mem (ModRM:r/m) to reg (ModRM:reg)
* 8B/r: mov r16, r/m16
* 8B/r: mov r32, r/m32
* REX.W 8B/r: mov r64, r/m64
*/
error = memread(vcpu, gpa, &val, size, arg);
if (error == 0) {
reg = gpr_map[vie->reg];
error = vie_update_register(vcpu, reg,
val, size);
}
break;
case 0xA1:
/*
* MOV from seg:moffset to AX/EAX/RAX
* A1: mov AX, moffs16
* A1: mov EAX, moffs32
* REX.W + A1: mov RAX, moffs64
*/
error = memread(vcpu, gpa, &val, size, arg);
if (error == 0) {
reg = VM_REG_GUEST_RAX;
error = vie_update_register(vcpu, reg,
val, size);
}
break;
case 0xA3:
/*
* MOV from AX/EAX/RAX to seg:moffset
* A3: mov moffs16, AX
* A3: mov moffs32, EAX
* REX.W + A3: mov moffs64, RAX
*/
error = vie_read_register(vcpu, VM_REG_GUEST_RAX,
&val);
if (error == 0) {
val &= size2mask[size];
error = memwrite(vcpu, gpa, val, size,
arg);
}
break;
case 0xC6:
/*
* MOV from imm8 to mem (ModRM:r/m)
* C6/0 mov r/m8, imm8
* REX + C6/0 mov r/m8, imm8
*/
size = 1; /* override for byte operation */
error = memwrite(vcpu, gpa, vie->immediate, size,
arg);
break;
case 0xC7:
/*
* MOV from imm16/imm32 to mem (ModRM:r/m)
* C7/0 mov r/m16, imm16
* C7/0 mov r/m32, imm32
* REX.W + C7/0 mov r/m64, imm32
* (sign-extended to 64-bits)
*/
val = vie->immediate & size2mask[size];
error = memwrite(vcpu, gpa, val, size, arg);
break;
default:
break;
}
return error;
}
static int
emulate_movx(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *arg)
{
int error, size;
enum vm_reg_name reg;
uint64_t val;
size = vie->opsize;
error = -EINVAL;
switch (vie->op.op_byte) {
case 0xB6:
/*
* MOV and zero extend byte from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F B6/r movzx r16, r/m8
* 0F B6/r movzx r32, r/m8
* REX.W + 0F B6/r movzx r64, r/m8
*/
/* get the first operand */
error = memread(vcpu, gpa, &val, 1, arg);
if (error)
break;
/* get the second operand */
reg = gpr_map[vie->reg];
/* zero-extend byte */
val = (uint8_t)val;
/* write the result */
error = vie_update_register(vcpu, reg, val, size);
break;
case 0xB7:
/*
* MOV and zero extend word from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F B7/r movzx r32, r/m16
* REX.W + 0F B7/r movzx r64, r/m16
*/
error = memread(vcpu, gpa, &val, 2, arg);
if (error)
return error;
reg = gpr_map[vie->reg];
/* zero-extend word */
val = (uint16_t)val;
error = vie_update_register(vcpu, reg, val, size);
break;
case 0xBE:
/*
* MOV and sign extend byte from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F BE/r movsx r16, r/m8
* 0F BE/r movsx r32, r/m8
* REX.W + 0F BE/r movsx r64, r/m8
*/
/* get the first operand */
error = memread(vcpu, gpa, &val, 1, arg);
if (error)
break;
/* get the second operand */
reg = gpr_map[vie->reg];
/* sign extend byte */
val = (int8_t)val;
/* write the result */
error = vie_update_register(vcpu, reg, val, size);
break;
default:
break;
}
return error;
}
/*
* Helper function to calculate and validate a linear address.
*/
static int
get_gla(struct vcpu *vcpu, __unused struct vie *vie,
struct vm_guest_paging *paging,
int opsize, int addrsize, int prot, enum vm_reg_name seg,
enum vm_reg_name gpr, uint64_t *gla, int *fault)
{
struct seg_desc desc;
uint64_t cr0, val, rflags;
int error;
error = vie_read_register(vcpu, VM_REG_GUEST_CR0, &cr0);
ASSERT(error == 0, "%s: error %d getting cr0", __func__, error);
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
ASSERT(error == 0, "%s: error %d getting rflags", __func__, error);
error = vm_get_seg_desc(vcpu, seg, &desc);
ASSERT(error == 0, "%s: error %d getting segment descriptor %d",
__func__, error, seg);
error = vie_read_register(vcpu, gpr, &val);
ASSERT(error == 0, "%s: error %d getting register %d", __func__,
error, gpr);
if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
addrsize, prot, gla)) {
if (seg == VM_REG_GUEST_SS)
/*vm_inject_ss(vcpu, 0);*/
pr_err("TODO: inject ss exception");
else
/*vm_inject_gp(vcpu);*/
pr_err("TODO: inject gp exception");
goto guest_fault;
}
if (vie_canonical_check(paging->cpu_mode, *gla)) {
if (seg == VM_REG_GUEST_SS)
/*vm_inject_ss(vcpu, 0);*/
pr_err("TODO: inject ss exception");
else
/*vm_inject_gp(vcpu);*/
pr_err("TODO: inject gp exception");
goto guest_fault;
}
if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla)) {
/*vm_inject_ac(vcpu, 0);*/
pr_err("TODO: inject ac exception");
goto guest_fault;
}
*fault = 0;
return 0;
guest_fault:
*fault = 1;
return 0;
}
static int
emulate_movs(struct vcpu *vcpu, __unused uint64_t gpa, struct vie *vie,
struct vm_guest_paging *paging,
__unused mem_region_read_t memread,
__unused mem_region_write_t memwrite,
__unused void *arg)
{
uint64_t dstaddr, srcaddr, dstgpa, srcgpa;
uint64_t rcx, rdi, rsi, rflags;
int error, fault, opsize, seg, repeat;
uint32_t err_code;
opsize = (vie->op.op_byte == 0xA4) ? 1 : vie->opsize;
error = 0;
/*
* XXX although the MOVS instruction is only supposed to be used with
* the "rep" prefix some guests like FreeBSD will use "repnz" instead.
*
* Empirically the "repnz" prefix has identical behavior to "rep"
* and the zero flag does not make a difference.
*/
repeat = vie->repz_present | vie->repnz_present;
if (repeat) {
error = vie_read_register(vcpu, VM_REG_GUEST_RCX, &rcx);
ASSERT(!error, "%s: error %d getting rcx", __func__, error);
/*
* The count register is %rcx, %ecx or %cx depending on the
* address size of the instruction.
*/
if ((rcx & vie_size2mask(vie->addrsize)) == 0) {
error = 0;
goto done;
}
}
seg = vie->segment_override ? vie->segment_register : VM_REG_GUEST_DS;
error = get_gla(vcpu, vie, paging, opsize, vie->addrsize,
PROT_READ, seg, VM_REG_GUEST_RSI, &srcaddr, &fault);
if (error || fault)
goto done;
error = get_gla(vcpu, vie, paging, opsize, vie->addrsize,
PROT_WRITE, VM_REG_GUEST_ES, VM_REG_GUEST_RDI, &dstaddr,
&fault);
if (error || fault)
goto done;
err_code = 0;
error = vm_gva2gpa(vcpu, srcaddr, &srcgpa, &err_code);
if (error)
goto done;
err_code = PAGE_FAULT_WR_FLAG;
error = vm_gva2gpa(vcpu, dstaddr, &dstgpa, &err_code);
if (error)
goto done;
memcpy_s((char *)dstaddr, 16, (char *)srcaddr, opsize);
error = vie_read_register(vcpu, VM_REG_GUEST_RSI, &rsi);
ASSERT(error == 0, "%s: error %d getting rsi", __func__, error);
error = vie_read_register(vcpu, VM_REG_GUEST_RDI, &rdi);
ASSERT(error == 0, "%s: error %d getting rdi", __func__, error);
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
ASSERT(error == 0, "%s: error %d getting rflags", __func__, error);
if (rflags & PSL_D) {
rsi -= opsize;
rdi -= opsize;
} else {
rsi += opsize;
rdi += opsize;
}
error = vie_update_register(vcpu, VM_REG_GUEST_RSI, rsi,
vie->addrsize);
ASSERT(error == 0, "%s: error %d updating rsi", __func__, error);
error = vie_update_register(vcpu, VM_REG_GUEST_RDI, rdi,
vie->addrsize);
ASSERT(error == 0, "%s: error %d updating rdi", __func__, error);
if (repeat) {
rcx = rcx - 1;
error = vie_update_register(vcpu, VM_REG_GUEST_RCX,
rcx, vie->addrsize);
ASSERT(!error, "%s: error %d updating rcx", __func__, error);
/*
* Repeat the instruction if the count register is not zero.
*/
if ((rcx & vie_size2mask(vie->addrsize)) != 0)
vm_restart_instruction(vcpu);
}
done:
ASSERT(error == 0, "%s: unexpected error %d", __func__, error);
return error;
}
static int
emulate_stos(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
__unused struct vm_guest_paging *paging,
__unused mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error, opsize, repeat;
uint64_t val;
uint64_t rcx, rdi, rflags;
opsize = (vie->op.op_byte == 0xAA) ? 1 : vie->opsize;
repeat = vie->repz_present | vie->repnz_present;
if (repeat) {
error = vie_read_register(vcpu, VM_REG_GUEST_RCX, &rcx);
ASSERT(!error, "%s: error %d getting rcx", __func__, error);
/*
* The count register is %rcx, %ecx or %cx depending on the
* address size of the instruction.
*/
if ((rcx & vie_size2mask(vie->addrsize)) == 0)
return 0;
}
error = vie_read_register(vcpu, VM_REG_GUEST_RAX, &val);
ASSERT(!error, "%s: error %d getting rax", __func__, error);
error = memwrite(vcpu, gpa, val, opsize, arg);
if (error)
return error;
error = vie_read_register(vcpu, VM_REG_GUEST_RDI, &rdi);
ASSERT(error == 0, "%s: error %d getting rdi", __func__, error);
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
ASSERT(error == 0, "%s: error %d getting rflags", __func__, error);
if (rflags & PSL_D)
rdi -= opsize;
else
rdi += opsize;
error = vie_update_register(vcpu, VM_REG_GUEST_RDI, rdi,
vie->addrsize);
ASSERT(error == 0, "%s: error %d updating rdi", __func__, error);
if (repeat) {
rcx = rcx - 1;
error = vie_update_register(vcpu, VM_REG_GUEST_RCX,
rcx, vie->addrsize);
ASSERT(!error, "%s: error %d updating rcx", __func__, error);
/*
* Repeat the instruction if the count register is not zero.
*/
if ((rcx & vie_size2mask(vie->addrsize)) != 0)
vm_restart_instruction(vcpu);
}
return 0;
}
static int
emulate_test(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *arg)
{
int error, size;
enum vm_reg_name reg;
uint64_t result, rflags, rflags2, val1, val2;
size = vie->opsize;
error = -EINVAL;
switch (vie->op.op_byte) {
case 0x84:
/*
* 84/r test r8, r/m8
*/
size = 1; /*override size for 8-bit operation*/
/* fallthrough */
case 0x85:
/*
* AND reg (ModRM:reg) and mem (ModRM:r/m) and discard
* the result.
*
*
* 85/r test r16, r/m16
* 85/r test r32, r/m32
* REX.W + 85/r test r64, r/m64
*/
/* get the first operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vcpu, reg, &val1);
if (error)
break;
/* get the second operand */
error = memread(vcpu, gpa, &val2, size, arg);
if (error)
break;
/* perform the operation and write the result */
result = val1 & val2;
break;
default:
break;
}
if (error)
return error;
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
if (error)
return error;
/*
* OF and CF are cleared; the SF, ZF and PF flags are set according
* to the result; AF is undefined.
*
* The updated status flags are obtained by subtracting 0 from 'result'.
*/
rflags2 = getcc(size, result, 0);
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
return error;
}
static int
emulate_and(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite,
void *arg)
{
int error, size;
enum vm_reg_name reg;
uint64_t result, rflags, rflags2, val1, val2;
size = vie->opsize;
error = -EINVAL;
switch (vie->op.op_byte) {
case 0x23:
/*
* AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
* result in reg.
*
* 23/r and r16, r/m16
* 23/r and r32, r/m32
* REX.W + 23/r and r64, r/m64
*/
/* get the first operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vcpu, reg, &val1);
if (error)
break;
/* get the second operand */
error = memread(vcpu, gpa, &val2, size, arg);
if (error)
break;
/* perform the operation and write the result */
result = val1 & val2;
error = vie_update_register(vcpu, reg, result,
size);
break;
case 0x81:
case 0x83:
/*
* AND mem (ModRM:r/m) with immediate and store the
* result in mem.
*
* 81 /4 and r/m16, imm16
* 81 /4 and r/m32, imm32
* REX.W + 81 /4 and r/m64, imm32 sign-extended to 64
*
* 83 /4 and r/m16, imm8 sign-extended to 16
* 83 /4 and r/m32, imm8 sign-extended to 32
* REX.W + 83/4 and r/m64, imm8 sign-extended to 64
*/
/* get the first operand */
error = memread(vcpu, gpa, &val1, size, arg);
if (error)
break;
/*
* perform the operation with the pre-fetched immediate
* operand and write the result
*/
result = val1 & vie->immediate;
error = memwrite(vcpu, gpa, result, size, arg);
break;
default:
break;
}
if (error)
return error;
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
if (error)
return error;
/*
* OF and CF are cleared; the SF, ZF and PF flags are set according
* to the result; AF is undefined.
*
* The updated status flags are obtained by subtracting 0 from 'result'.
*/
rflags2 = getcc(size, result, 0);
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
return error;
}
static int
emulate_or(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite,
void *arg)
{
int error, size;
enum vm_reg_name reg;
uint64_t val1, val2, result, rflags, rflags2;
size = vie->opsize;
error = -EINVAL;
switch (vie->op.op_byte) {
case 0x81:
case 0x83:
/*
* OR mem (ModRM:r/m) with immediate and store the
* result in mem.
*
* 81 /1 or r/m16, imm16
* 81 /1 or r/m32, imm32
* REX.W + 81 /1 or r/m64, imm32 sign-extended to
* 64
*
* 83 /1 or r/m16, imm8 sign-extended to
* 16
* 83 /1 or r/m32, imm8 sign-extended to
* 32
* REX.W + 83/1 or r/m64, imm8 sign-extended to
* 64
*/
/* get the first operand */
error = memread(vcpu, gpa, &val1, size, arg);
if (error)
break;
/*
* perform the operation with the pre-fetched immediate
* operand and write the result
*/
result = val1 | vie->immediate;
error = memwrite(vcpu, gpa, result, size, arg);
break;
case 0x09:
/*
* OR mem (ModRM:r/m) with reg (ModRM:reg) and store the
* result in mem.
* 09/r: OR r/m16, r16
* 09/r: OR r/m32, r32
*/
/* get the first operand */
error = memread(vcpu, gpa, &val1, size, arg);
if (error)
break;
/* get the second operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vcpu, reg, &val2);
if (error)
break;
/* perform the operation and write the result */
result = val1 | val2;
result &= size2mask[size];
error = memwrite(vcpu, gpa, result, size, arg);
break;
default:
break;
}
if (error)
return error;
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
if (error)
return error;
/*
* OF and CF are cleared; the SF, ZF and PF flags are set according
* to the result; AF is undefined.
*
* The updated status flags are obtained by subtracting 0 from 'result'.
*/
rflags2 = getcc(size, result, 0);
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
return error;
}
static int
emulate_cmp(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *arg)
{
int error, size;
uint64_t regop, memop, op1, op2, rflags, rflags2;
enum vm_reg_name reg;
size = vie->opsize;
switch (vie->op.op_byte) {
case 0x39:
case 0x3B:
/*
* 39/r CMP r/m16, r16
* 39/r CMP r/m32, r32
* REX.W 39/r CMP r/m64, r64
*
* 3B/r CMP r16, r/m16
* 3B/r CMP r32, r/m32
* REX.W + 3B/r CMP r64, r/m64
*
* Compare the first operand with the second operand and
* set status flags in EFLAGS register. The comparison
* is performed by subtracting the second operand from
* the first operand and then setting the status flags.
*/
/* Get the register operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vcpu, reg, &regop);
if (error)
return error;
/* Get the memory operand */
error = memread(vcpu, gpa, &memop, size, arg);
if (error)
return error;
if (vie->op.op_byte == 0x3B) {
op1 = regop;
op2 = memop;
} else {
op1 = memop;
op2 = regop;
}
rflags2 = getcc(size, op1, op2);
break;
case 0x80:
case 0x81:
case 0x83:
/*
* 80 /7 cmp r/m8, imm8
* REX + 80 /7 cmp r/m8, imm8
*
* 81 /7 cmp r/m16, imm16
* 81 /7 cmp r/m32, imm32
* REX.W + 81 /7 cmp r/m64, imm32 sign-extended
* to 64
*
* 83 /7 cmp r/m16, imm8 sign-extended
* to 16
* 83 /7 cmp r/m32, imm8 sign-extended
* to 32
* REX.W + 83 /7 cmp r/m64, imm8 sign-extended
* to 64
*
* Compare mem (ModRM:r/m) with immediate and set
* status flags according to the results. The
* comparison is performed by subtracting the
* immediate from the first operand and then setting
* the status flags.
*
*/
if (vie->op.op_byte == 0x80)
size = 1;
/* get the first operand */
error = memread(vcpu, gpa, &op1, size, arg);
if (error)
return error;
rflags2 = getcc(size, op1, vie->immediate);
break;
default:
return -EINVAL;
}
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
if (error)
return error;
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & RFLAGS_STATUS_BITS;
error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
return error;
}
static int
emulate_sub(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *arg)
{
int error, size;
uint64_t nval, rflags, rflags2, val1, val2;
enum vm_reg_name reg;
size = vie->opsize;
error = -EINVAL;
switch (vie->op.op_byte) {
case 0x2B:
/*
* SUB r/m from r and store the result in r
*
* 2B/r SUB r16, r/m16
* 2B/r SUB r32, r/m32
* REX.W + 2B/r SUB r64, r/m64
*/
/* get the first operand */
reg = gpr_map[vie->reg];
error = vie_read_register(vcpu, reg, &val1);
if (error)
break;
/* get the second operand */
error = memread(vcpu, gpa, &val2, size, arg);
if (error)
break;
/* perform the operation and write the result */
nval = val1 - val2;
error = vie_update_register(vcpu, reg, nval,
size);
break;
default:
break;
}
if (!error) {
rflags2 = getcc(size, val1, val2);
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS,
&rflags);
if (error)
return error;
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & RFLAGS_STATUS_BITS;
error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS,
rflags, 8);
}
return error;
}
static int
emulate_stack_op(struct vcpu *vcpu, uint64_t mmio_gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
struct seg_desc ss_desc;
uint64_t cr0, rflags, rsp, stack_gla, stack_gpa, val;
int error, size, stackaddrsize, pushop;
uint32_t err_code = 0;
memset(&ss_desc, 0, sizeof(ss_desc));
val = 0;
size = vie->opsize;
pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
/*
* From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
*/
if (paging->cpu_mode == CPU_MODE_REAL) {
stackaddrsize = 2;
} else if (paging->cpu_mode == CPU_MODE_64BIT) {
/*
* "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
* - Stack pointer size is always 64-bits.
* - PUSH/POP of 32-bit values is not possible in 64-bit mode.
* - 16-bit PUSH/POP is supported by using the operand size
* override prefix (66H).
*/
stackaddrsize = 8;
size = vie->opsize_override ? 2 : 8;
} else {
/*
* In protected or compatibility mode the 'B' flag in the
* stack-segment descriptor determines the size of the
* stack pointer.
*/
error = vm_get_seg_desc(vcpu, VM_REG_GUEST_SS, &ss_desc);
ASSERT(error == 0, "%s: error %d getting SS descriptor",
__func__, error);
if (SEG_DESC_DEF32(ss_desc.access))
stackaddrsize = 4;
else
stackaddrsize = 2;
}
error = vie_read_register(vcpu, VM_REG_GUEST_CR0, &cr0);
ASSERT(error == 0, "%s: error %d getting cr0", __func__, error);
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
ASSERT(error == 0, "%s: error %d getting rflags", __func__, error);
error = vie_read_register(vcpu, VM_REG_GUEST_RSP, &rsp);
ASSERT(error == 0, "%s: error %d getting rsp", __func__, error);
if (pushop)
rsp -= size;
if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &ss_desc,
rsp, size, stackaddrsize, pushop ? PROT_WRITE : PROT_READ,
&stack_gla)) {
/*vm_inject_ss(vcpu, 0);*/
pr_err("TODO: inject ss exception");
}
if (vie_canonical_check(paging->cpu_mode, stack_gla)) {
/*vm_inject_ss(vcpu, 0);*/
pr_err("TODO: inject ss exception");
}
if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)) {
/*vm_inject_ac(vcpu, 0);*/
pr_err("TODO: inject ac exception");
return 0;
}
if (pushop)
err_code |= PAGE_FAULT_WR_FLAG;
error = vm_gva2gpa(vcpu, stack_gla, &stack_gpa, &err_code);
if (error) {
pr_err("%s: failed to translate gva2gpa", __func__);
return error;
}
if (pushop) {
error = memread(vcpu, mmio_gpa, &val, size, arg);
if (error == 0)
error = memwrite(vcpu, stack_gpa, val, size, arg);
} else {
error = memread(vcpu, stack_gpa, &val, size, arg);
if (error == 0)
error = memwrite(vcpu, mmio_gpa, val, size, arg);
rsp += size;
}
if (error == 0) {
error = vie_update_register(vcpu, VM_REG_GUEST_RSP, rsp,
stackaddrsize);
ASSERT(error == 0, "error %d updating rsp", error);
}
return error;
}
static int
emulate_push(struct vcpu *vcpu, uint64_t mmio_gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error;
/*
* Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
*
* PUSH is part of the group 5 extended opcodes and is identified
* by ModRM:reg = b110.
*/
if ((vie->reg & 7) != 6)
return -EINVAL;
error = emulate_stack_op(vcpu, mmio_gpa, vie, paging, memread,
memwrite, arg);
return error;
}
static int
emulate_pop(struct vcpu *vcpu, uint64_t mmio_gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error;
/*
* Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
*
* POP is part of the group 1A extended opcodes and is identified
* by ModRM:reg = b000.
*/
if ((vie->reg & 7) != 0)
return -EINVAL;
error = emulate_stack_op(vcpu, mmio_gpa, vie, paging, memread,
memwrite, arg);
return error;
}
static int
emulate_group1(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
__unused struct vm_guest_paging *paging,
mem_region_read_t memread,
mem_region_write_t memwrite, void *memarg)
{
int error;
switch (vie->reg & 7) {
case 0x1: /* OR */
error = emulate_or(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case 0x4: /* AND */
error = emulate_and(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case 0x7: /* CMP */
error = emulate_cmp(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
default:
error = EINVAL;
break;
}
return error;
}
static int
emulate_bittest(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *memarg)
{
uint64_t val, rflags;
int error, bitmask, bitoff;
/*
* 0F BA is a Group 8 extended opcode.
*
* Currently we only emulate the 'Bit Test' instruction which is
* identified by a ModR/M:reg encoding of 100b.
*/
if ((vie->reg & 7) != 4)
return -EINVAL;
error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
ASSERT(error == 0, "%s: error %d getting rflags", __func__, error);
error = memread(vcpu, gpa, &val, vie->opsize, memarg);
if (error)
return error;
/*
* Intel SDM, Vol 2, Table 3-2:
* "Range of Bit Positions Specified by Bit Offset Operands"
*/
bitmask = vie->opsize * 8 - 1;
bitoff = vie->immediate & bitmask;
/* Copy the bit into the Carry flag in %rflags */
if (val & (1UL << bitoff))
rflags |= PSL_C;
else
rflags &= ~PSL_C;
error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
ASSERT(error == 0, "%s: error %d updating rflags", __func__, error);
return 0;
}
int
vmm_emulate_instruction(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *memarg)
{
int error;
if (!vie->decoded)
return -EINVAL;
switch (vie->op.op_type) {
case VIE_OP_TYPE_GROUP1:
error = emulate_group1(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_POP:
error = emulate_pop(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_PUSH:
error = emulate_push(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_CMP:
error = emulate_cmp(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOV:
error = emulate_mov(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOVSX:
case VIE_OP_TYPE_MOVZX:
error = emulate_movx(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOVS:
error = emulate_movs(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_STOS:
error = emulate_stos(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_AND:
error = emulate_and(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_TEST:
error = emulate_test(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_OR:
error = emulate_or(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_SUB:
error = emulate_sub(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_BITTEST:
error = emulate_bittest(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
default:
error = -EINVAL;
break;
}
return error;
}
int
vie_alignment_check(int cpl, int size, uint64_t cr0, uint64_t rf, uint64_t gla)
{
ASSERT(size == 1 || size == 2 || size == 4 || size == 8,
"%s: invalid size %d", __func__, size);
ASSERT(cpl >= 0 && cpl <= 3, "%s: invalid cpl %d", __func__, cpl);
if (cpl != 3 || (cr0 & CR0_AM) == 0 || (rf & PSL_AC) == 0)
return 0;
return (gla & (size - 1)) ? 1 : 0;
}
int
vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
{
uint64_t mask;
if (cpu_mode != CPU_MODE_64BIT)
return 0;
/*
* The value of the bit 47 in the 'gla' should be replicated in the
* most significant 16 bits.
*/
mask = ~((1UL << 48) - 1);
if (gla & (1UL << 47))
return (gla & mask) != mask;
else
return (gla & mask) != 0;
}
uint64_t
vie_size2mask(int size)
{
ASSERT(size == 1 || size == 2 || size == 4 || size == 8,
"vie_size2mask: invalid size %d", size);
return size2mask[size];
}
int
vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum vm_reg_name seg,
struct seg_desc *desc, uint64_t offset, int length, int addrsize,
int prot, uint64_t *gla)
{
uint64_t firstoff, low_limit, high_limit, segbase;
int glasize, type;
ASSERT(seg >= VM_REG_GUEST_ES && seg <= VM_REG_GUEST_GS,
"%s: invalid segment %d", __func__, seg);
ASSERT(length == 1 || length == 2 || length == 4 || length == 8,
"%s: invalid operand size %d", __func__, length);
ASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0,
"%s: invalid prot %#x", __func__, prot);
firstoff = offset;
if (cpu_mode == CPU_MODE_64BIT) {
ASSERT(addrsize == 4 || addrsize == 8,
"%s: invalid address size %d for cpu_mode %d",
__func__, addrsize, cpu_mode);
glasize = 8;
} else {
ASSERT(addrsize == 2 || addrsize == 4,
"%s: invalid address size %d for cpu mode %d",
__func__, addrsize, cpu_mode);
glasize = 4;
/*
* If the segment selector is loaded with a NULL selector
* then the descriptor is unusable and attempting to use
* it results in a #GP(0).
*/
if (SEG_DESC_UNUSABLE(desc->access))
return -1;
/*
* The processor generates a #NP exception when a segment
* register is loaded with a selector that points to a
* descriptor that is not present. If this was the case then
* it would have been checked before the VM-exit.
*/
ASSERT(SEG_DESC_PRESENT(desc->access),
"segment %d not present: %#x", seg, desc->access);
/*
* The descriptor type must indicate a code/data segment.
*/
type = SEG_DESC_TYPE(desc->access);
ASSERT(type >= 16 && type <= 31,
"segment %d has invalid descriptor type %#x",
seg, type);
if (prot & PROT_READ) {
/* #GP on a read access to a exec-only code segment */
if ((type & 0xA) == 0x8)
return -1;
}
if (prot & PROT_WRITE) {
/*
* #GP on a write access to a code segment or a
* read-only data segment.
*/
if (type & 0x8) /* code segment */
return -1;
if ((type & 0xA) == 0) /* read-only data seg */
return -1;
}
/*
* 'desc->limit' is fully expanded taking granularity into
* account.
*/
if ((type & 0xC) == 0x4) {
/* expand-down data segment */
low_limit = desc->limit + 1;
high_limit = SEG_DESC_DEF32(desc->access) ?
0xffffffff : 0xffff;
} else {
/* code segment or expand-up data segment */
low_limit = 0;
high_limit = desc->limit;
}
while (length > 0) {
offset &= vie_size2mask(addrsize);
if (offset < low_limit || offset > high_limit)
return -1;
offset++;
length--;
}
}
/*
* In 64-bit mode all segments except %fs and %gs have a segment
* base address of 0.
*/
if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
seg != VM_REG_GUEST_GS) {
segbase = 0;
} else {
segbase = desc->base;
}
/*
* Truncate 'firstoff' to the effective address size before adding
* it to the segment base.
*/
firstoff &= vie_size2mask(addrsize);
*gla = (segbase + firstoff) & vie_size2mask(glasize);
return 0;
}
void
vie_init(struct vie *vie, const char *inst_bytes, uint32_t inst_length)
{
ASSERT(inst_length <= VIE_INST_SIZE,
"%s: invalid instruction length (%d)", __func__, inst_length);
memset(vie, 0, sizeof(struct vie));
vie->base_register = VM_REG_LAST;
vie->index_register = VM_REG_LAST;
vie->segment_register = VM_REG_LAST;
if (inst_length) {
memcpy_s((char *)vie->inst, VIE_INST_SIZE,
(char *)inst_bytes, inst_length);
vie->num_valid = inst_length;
}
}
static int
vie_peek(struct vie *vie, uint8_t *x)
{
if (vie->num_processed < vie->num_valid) {
*x = vie->inst[vie->num_processed];
return 0;
} else
return -1;
}
static void
vie_advance(struct vie *vie)
{
vie->num_processed++;
}
static bool
segment_override(uint8_t x, int *seg)
{
switch (x) {
case 0x2E:
*seg = VM_REG_GUEST_CS;
break;
case 0x36:
*seg = VM_REG_GUEST_SS;
break;
case 0x3E:
*seg = VM_REG_GUEST_DS;
break;
case 0x26:
*seg = VM_REG_GUEST_ES;
break;
case 0x64:
*seg = VM_REG_GUEST_FS;
break;
case 0x65:
*seg = VM_REG_GUEST_GS;
break;
default:
return false;
}
return true;
}
static int
decode_prefixes(struct vie *vie, enum vm_cpu_mode cpu_mode, int cs_d)
{
uint8_t x;
while (1) {
if (vie_peek(vie, &x))
return -1;
if (x == 0x66)
vie->opsize_override = 1;
else if (x == 0x67)
vie->addrsize_override = 1;
else if (x == 0xF3)
vie->repz_present = 1;
else if (x == 0xF2)
vie->repnz_present = 1;
else if (segment_override(x, &vie->segment_register))
vie->segment_override = 1;
else
break;
vie_advance(vie);
}
/*
* From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
* - Only one REX prefix is allowed per instruction.
* - The REX prefix must immediately precede the opcode byte or the
* escape opcode byte.
* - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
* the mandatory prefix must come before the REX prefix.
*/
if (cpu_mode == CPU_MODE_64BIT && x >= 0x40 && x <= 0x4F) {
vie->rex_present = 1;
vie->rex_w = x & 0x8 ? 1 : 0;
vie->rex_r = x & 0x4 ? 1 : 0;
vie->rex_x = x & 0x2 ? 1 : 0;
vie->rex_b = x & 0x1 ? 1 : 0;
vie_advance(vie);
}
/*
* Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
*/
if (cpu_mode == CPU_MODE_64BIT) {
/*
* Default address size is 64-bits and default operand size
* is 32-bits.
*/
vie->addrsize = vie->addrsize_override ? 4 : 8;
if (vie->rex_w)
vie->opsize = 8;
else if (vie->opsize_override)
vie->opsize = 2;
else
vie->opsize = 4;
} else if (cs_d) {
/* Default address and operand sizes are 32-bits */
vie->addrsize = vie->addrsize_override ? 2 : 4;
vie->opsize = vie->opsize_override ? 2 : 4;
} else {
/* Default address and operand sizes are 16-bits */
vie->addrsize = vie->addrsize_override ? 4 : 2;
vie->opsize = vie->opsize_override ? 4 : 2;
}
return 0;
}
static int
decode_two_byte_opcode(struct vie *vie)
{
uint8_t x;
if (vie_peek(vie, &x))
return -1;
vie->op = two_byte_opcodes[x];
if (vie->op.op_type == VIE_OP_TYPE_NONE)
return -1;
vie_advance(vie);
return 0;
}
static int
decode_opcode(struct vie *vie)
{
uint8_t x;
if (vie_peek(vie, &x))
return -1;
vie->op = one_byte_opcodes[x];
if (vie->op.op_type == VIE_OP_TYPE_NONE)
return -1;
vie_advance(vie);
if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE)
return decode_two_byte_opcode(vie);
return 0;
}
static int
decode_modrm(struct vie *vie, enum vm_cpu_mode cpu_mode)
{
uint8_t x;
if (vie->op.op_flags & VIE_OP_F_NO_MODRM)
return 0;
if (cpu_mode == CPU_MODE_REAL)
return -1;
if (vie_peek(vie, &x))
return -1;
vie->mod = (x >> 6) & 0x3;
vie->rm = (x >> 0) & 0x7;
vie->reg = (x >> 3) & 0x7;
/*
* A direct addressing mode makes no sense in the context of an EPT
* fault. There has to be a memory access involved to cause the
* EPT fault.
*/
if (vie->mod == VIE_MOD_DIRECT)
return -1;
if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
(vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
/*
* Table 2-5: Special Cases of REX Encodings
*
* mod=0, r/m=5 is used in the compatibility mode to
* indicate a disp32 without a base register.
*
* mod!=3, r/m=4 is used in the compatibility mode to
* indicate that the SIB byte is present.
*
* The 'b' bit in the REX prefix is don't care in
* this case.
*/
} else {
vie->rm |= (vie->rex_b << 3);
}
vie->reg |= (vie->rex_r << 3);
/* SIB */
if (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)
goto done;
vie->base_register = gpr_map[vie->rm];
switch (vie->mod) {
case VIE_MOD_INDIRECT_DISP8:
vie->disp_bytes = 1;
break;
case VIE_MOD_INDIRECT_DISP32:
vie->disp_bytes = 4;
break;
case VIE_MOD_INDIRECT:
if (vie->rm == VIE_RM_DISP32) {
vie->disp_bytes = 4;
/*
* Table 2-7. RIP-Relative Addressing
*
* In 64-bit mode mod=00 r/m=101 implies [rip] + disp32
* whereas in compatibility mode it just implies disp32.
*/
if (cpu_mode == CPU_MODE_64BIT)
vie->base_register = VM_REG_GUEST_RIP;
else
vie->base_register = VM_REG_LAST;
}
break;
}
done:
vie_advance(vie);
return 0;
}
static int
decode_sib(struct vie *vie)
{
uint8_t x;
/* Proceed only if SIB byte is present */
if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB)
return 0;
if (vie_peek(vie, &x))
return -1;
/* De-construct the SIB byte */
vie->ss = (x >> 6) & 0x3;
vie->index = (x >> 3) & 0x7;
vie->base = (x >> 0) & 0x7;
/* Apply the REX prefix modifiers */
vie->index |= vie->rex_x << 3;
vie->base |= vie->rex_b << 3;
switch (vie->mod) {
case VIE_MOD_INDIRECT_DISP8:
vie->disp_bytes = 1;
break;
case VIE_MOD_INDIRECT_DISP32:
vie->disp_bytes = 4;
break;
}
if (vie->mod == VIE_MOD_INDIRECT &&
(vie->base == 5 || vie->base == 13)) {
/*
* Special case when base register is unused if mod = 0
* and base = %rbp or %r13.
*
* Documented in:
* Table 2-3: 32-bit Addressing Forms with the SIB Byte
* Table 2-5: Special Cases of REX Encodings
*/
vie->disp_bytes = 4;
} else {
vie->base_register = gpr_map[vie->base];
}
/*
* All encodings of 'index' are valid except for %rsp (4).
*
* Documented in:
* Table 2-3: 32-bit Addressing Forms with the SIB Byte
* Table 2-5: Special Cases of REX Encodings
*/
if (vie->index != 4)
vie->index_register = gpr_map[vie->index];
/* 'scale' makes sense only in the context of an index register */
if (vie->index_register < VM_REG_LAST)
vie->scale = 1 << vie->ss;
vie_advance(vie);
return 0;
}
static int
decode_displacement(struct vie *vie)
{
int n, i;
uint8_t x;
union {
char buf[4];
int8_t signed8;
int32_t signed32;
} u;
n = vie->disp_bytes;
if (n == 0)
return 0;
if (n != 1 && n != 4)
panic("decode_displacement: invalid disp_bytes %d", n);
for (i = 0; i < n; i++) {
if (vie_peek(vie, &x))
return -1;
u.buf[i] = x;
vie_advance(vie);
}
if (n == 1)
vie->displacement = u.signed8; /* sign-extended */
else
vie->displacement = u.signed32; /* sign-extended */
return 0;
}
static int
decode_immediate(struct vie *vie)
{
int i, n;
uint8_t x;
union {
char buf[4];
int8_t signed8;
int16_t signed16;
int32_t signed32;
} u;
/* Figure out immediate operand size (if any) */
if (vie->op.op_flags & VIE_OP_F_IMM) {
/*
* Section 2.2.1.5 "Immediates", Intel SDM:
* In 64-bit mode the typical size of immediate operands
* remains 32-bits. When the operand size if 64-bits, the
* processor sign-extends all immediates to 64-bits prior
* to their use.
*/
if (vie->opsize == 4 || vie->opsize == 8)
vie->imm_bytes = 4;
else
vie->imm_bytes = 2;
} else if (vie->op.op_flags & VIE_OP_F_IMM8) {
vie->imm_bytes = 1;
}
n = vie->imm_bytes;
if (n == 0)
return 0;
ASSERT(n == 1 || n == 2 || n == 4,
"%s: invalid number of immediate bytes: %d", __func__, n);
for (i = 0; i < n; i++) {
if (vie_peek(vie, &x))
return -1;
u.buf[i] = x;
vie_advance(vie);
}
/* sign-extend the immediate value before use */
if (n == 1)
vie->immediate = u.signed8;
else if (n == 2)
vie->immediate = u.signed16;
else
vie->immediate = u.signed32;
return 0;
}
static int
decode_moffset(struct vie *vie)
{
int i, n;
uint8_t x;
union {
char buf[8];
uint64_t u64;
} u;
if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0)
return 0;
/*
* Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
* The memory offset size follows the address-size of the instruction.
*/
n = vie->addrsize;
ASSERT(n == 2 || n == 4 || n == 8, "invalid moffset bytes: %d", n);
u.u64 = 0;
for (i = 0; i < n; i++) {
if (vie_peek(vie, &x))
return -1;
u.buf[i] = x;
vie_advance(vie);
}
vie->displacement = u.u64;
return 0;
}
int
__decode_instruction(__unused struct vcpu *vcpu, __unused uint64_t gla,
enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
{
if (decode_prefixes(vie, cpu_mode, cs_d))
return -1;
if (decode_opcode(vie))
return -1;
if (decode_modrm(vie, cpu_mode))
return -1;
if (decode_sib(vie))
return -1;
if (decode_displacement(vie))
return -1;
if (decode_immediate(vie))
return -1;
if (decode_moffset(vie))
return -1;
vie->decoded = 1; /* success */
return 0;
}