acrn-hypervisor/hypervisor/arch/x86/guest/virtual_cr.c
Ziheng Li eb8bcb06b3 Update copyright year range in code headers
Modified the copyright year range in code, and corrected "int32_tel"
into "Intel" in two "hypervisor/include/debug/profiling.h" and
"hypervisor/include/debug/profiling_internal.h".

Tracked-On: #7559
Signed-off-by: Ziheng Li <ziheng.li@intel.com>
2022-07-15 11:48:35 +08:00

604 lines
19 KiB
C

/*
* Copyright (C) 2018-2022 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* this file contains vmcs operations which is vcpu related
*/
#include <types.h>
#include <errno.h>
#include <asm/lib/bits.h>
#include <asm/guest/virq.h>
#include <asm/mmu.h>
#include <asm/guest/vcpu.h>
#include <asm/guest/vm.h>
#include <asm/vmx.h>
#include <asm/vtd.h>
#include <asm/guest/vmexit.h>
#include <asm/pgtable.h>
#include <asm/cpufeatures.h>
#include <trace.h>
#include <logmsg.h>
/*
* Physical CR4 bits in VMX operation may be either flexible or fixed.
* Guest CR4 bits may be operatable or reserved.
*
* All the guest reserved bits should be TRAPed and EMULATed by HV
* (inject #GP).
*
* For guest operatable bits, it may be:
* CR4_PASSTHRU_BITS:
* Bits that may be passed through to guest. The actual passthru bits
* should be masked by flexible bits.
*
* CR4_TRAP_AND_PASSTHRU_BITS:
* The bits are trapped by HV and HV emulation will eventually write
* the guest value to physical CR4 (GUEST_CR4) too. The actual bits
* should be masked by flexible bits.
*
* CR4_TRAP_AND_EMULATE_BITS:
* The bits are trapped by HV and emulated, but HV updates vCR4 only
* (no update to physical CR4), i.e. pure software emulation.
*
* CR4_EMULATED_RESERVE_BITS:
* The bits are trapped, but are emulated by injecting a #GP.
*
* NOTE: Above bits should not overlap.
*
*/
#define CR4_PASSTHRU_BITS (CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | \
CR4_PGE | CR4_PCE | CR4_OSFXSR | CR4_PCIDE | \
CR4_OSXSAVE | CR4_FSGSBASE | CR4_OSXMMEXCPT | \
CR4_UMIP | CR4_LA57)
static uint64_t cr4_passthru_mask = CR4_PASSTHRU_BITS; /* bound to flexible bits */
#define CR4_TRAP_AND_PASSTHRU_BITS (CR4_PSE | CR4_PAE | CR4_SMEP | CR4_SMAP | CR4_PKE | CR4_PKS | CR4_KL)
static uint64_t cr4_trap_and_passthru_mask = CR4_TRAP_AND_PASSTHRU_BITS; /* bound to flexible bits */
#ifdef CONFIG_NVMX_ENABLED
#define CR4_TRAP_AND_EMULATE_BITS (CR4_VMXE | CR4_MCE) /* software emulated bits even if host is fixed */
#else
#define CR4_TRAP_AND_EMULATE_BITS CR4_MCE /* software emulated bits even if host is fixed */
#endif
/* Change of these bits should change vcpuid too */
#ifdef CONFIG_NVMX_ENABLED
#define CR4_EMULATED_RESERVE_BITS (CR4_CET | CR4_SMXE)
#else
#define CR4_EMULATED_RESERVE_BITS (CR4_VMXE | CR4_CET | CR4_SMXE)
#endif
/* The physical CR4 value for bits of CR4_EMULATED_RESERVE_BITS */
#define CR4_EMRSV_BITS_PHYS_VALUE CR4_VMXE
/* The CR4 value guest expected to see for bits of CR4_EMULATED_RESERVE_BITS */
#define CR4_EMRSV_BITS_VIRT_VALUE 0UL
static uint64_t cr4_rsv_bits_guest_value;
/*
* Initial value or reset value of GUEST_CR4, i.e. physical value.
* They are likely zeros, but some reserved bits may be not.
*/
static uint64_t initial_guest_cr4;
/*
* Bits not in cr4_passthru_mask/cr4_trap_and_passthru_mask/cr4_trap_and_emulate_mask
* are reserved bits, includes at least CR4_EMULATED_RESERVE_BITS
*/
static uint64_t cr4_reserved_bits_mask;
/*
* CR0 follows the same rule of CR4, except it won't inject #GP for reserved bits violation
* for the low 32 bits. Instead, it ignores the software write to those reserved bits.
*/
#define CR0_PASSTHRU_BITS (CR0_MP | CR0_EM | CR0_TS | CR0_ET | CR0_NE | CR0_AM)
static uint64_t cr0_passthru_mask = CR0_PASSTHRU_BITS; /* bound to flexible bits */
#define CR0_TRAP_AND_PASSTHRU_BITS (CR0_PE | CR0_PG | CR0_WP)
static uint64_t cr0_trap_and_passthru_mask = CR0_TRAP_AND_PASSTHRU_BITS;/* bound to flexible bits */
/* software emulated bits even if host is fixed */
#define CR0_TRAP_AND_EMULATE_BITS (CR0_CD | CR0_NW)
/* These bits may be part of flexible bits but reserved to guest */
#define CR0_EMULATED_RESERVE_BITS 0UL
#define CR0_EMRSV_BITS_PHYS_VALUE 0UL
#define CR0_EMRSV_BITS_VIRT_VALUE 0UL
static uint64_t cr0_rsv_bits_guest_value;
static uint64_t initial_guest_cr0; /* Initial value of GUEST_CR0 */
static uint64_t cr0_reserved_bits_mask;
/* PAE PDPTE bits 1 ~ 2, 5 ~ 8 are always reserved */
#define PAE_PDPTE_FIXED_RESVD_BITS 0x00000000000001E6UL
static int32_t load_pdptrs(const struct acrn_vcpu *vcpu)
{
uint64_t guest_cr3 = exec_vmread(VMX_GUEST_CR3);
struct cpuinfo_x86 *cpu_info = get_pcpu_info();
int32_t ret = 0;
uint64_t pdpte[4]; /* Total four PDPTE */
uint64_t rsvd_bits_mask;
uint8_t maxphyaddr;
int32_t i;
/* check whether the address area pointed by the guest cr3
* can be accessed or not
*/
if (copy_from_gpa(vcpu->vm, pdpte, get_pae_pdpt_addr(guest_cr3), sizeof(pdpte)) != 0) {
ret = -EFAULT;
} else {
/* Check if any of the PDPTEs sets both the P flag
* and any reserved bit
*/
maxphyaddr = cpu_info->phys_bits;
/* reserved bits: 1~2, 5~8, maxphyaddr ~ 63 */
rsvd_bits_mask = (63U < maxphyaddr) ? 0UL : (((1UL << (63U - maxphyaddr + 1U)) - 1UL) << maxphyaddr);
rsvd_bits_mask |= PAE_PDPTE_FIXED_RESVD_BITS;
for (i = 0; i < 4; i++) {
if (((pdpte[i] & PAGE_PRESENT) != 0UL) && ((pdpte[i] & rsvd_bits_mask) != 0UL)) {
ret = -EFAULT;
break;
}
}
}
if (ret == 0) {
exec_vmwrite64(VMX_GUEST_PDPTE0_FULL, pdpte[0]);
exec_vmwrite64(VMX_GUEST_PDPTE1_FULL, pdpte[1]);
exec_vmwrite64(VMX_GUEST_PDPTE2_FULL, pdpte[2]);
exec_vmwrite64(VMX_GUEST_PDPTE3_FULL, pdpte[3]);
}
return ret;
}
/*
* Whether the value changes the reserved bits.
*/
static inline bool is_valid_cr0(uint64_t cr0)
{
return (cr0 & cr0_reserved_bits_mask) == cr0_rsv_bits_guest_value;
}
/*
* Certain combination of CR0 write may lead to #GP.
*/
static bool is_cr0_write_valid(struct acrn_vcpu *vcpu, uint64_t cr0)
{
bool ret = true;
/*
* Set 1 in high 32 bits (part of reserved bits) leads to #GP.
*/
if ((cr0 >> 32UL) != 0UL) {
ret = false;
} else {
/* SDM 25.3 "Changes to instruction behavior in VMX non-root"
*
* We always require "unrestricted guest" control enabled. So
*
* CR0.PG = 1, CR4.PAE = 0 and IA32_EFER.LME = 1 is invalid.
* CR0.PE = 0 and CR0.PG = 1 is invalid.
*/
if (((cr0 & CR0_PG) != 0UL) && (!is_pae(vcpu)) &&
((vcpu_get_efer(vcpu) & MSR_IA32_EFER_LME_BIT) != 0UL)) {
ret = false;
} else {
if (((cr0 & CR0_PE) == 0UL) && ((cr0 & CR0_PG) != 0UL)) {
ret = false;
} else {
/* SDM 6.15 "Exception and Interrupt Refrerence" GP Exception
*
* Loading CR0 register with a set NW flag and a clear CD flag
* is invalid
*/
if (((cr0 & CR0_CD) == 0UL) && ((cr0 & CR0_NW) != 0UL)) {
ret = false;
}
/* SDM 4.10.1 "Process-Context Identifiers"
*
* MOV to CR0 causes a general-protection exception if it would
* clear CR0.PG to 0 while CR4.PCIDE = 1
*/
if (((cr0 & CR0_PG) == 0UL) && ((vcpu_get_cr4(vcpu) & CR4_PCIDE) != 0UL)) {
ret = false;
}
}
}
}
return ret;
}
/*
* Handling of CR0:
* Assume "unrestricted guest" feature is supported by vmx.
* For mode switch, hv only needs to take care of enabling/disabling long mode,
* thanks to "unrestricted guest" feature.
*
* - PE (0) Trapped to track cpu mode.
* Set the value according to the value from guest.
* - MP (1) Flexible to guest
* - EM (2) Flexible to guest
* - TS (3) Flexible to guest
* - ET (4) Flexible to guest
* - NE (5) must always be 1
* - WP (16) Trapped to get if it inhibits supervisor level procedures to
* write into ro-pages.
* - AM (18) Flexible to guest
* - NW (29) Trapped to emulate cache disable situation
* - CD (30) Trapped to emulate cache disable situation
* - PG (31) Trapped to track cpu/paging mode.
* Set the value according to the value from guest.
*/
static void vmx_write_cr0(struct acrn_vcpu *vcpu, uint64_t value)
{
bool err_found = false;
/*
* For reserved bits of CR0, SDM states:
* attempts to set them have no impact, while set to high 32 bits lead to #GP.
*/
if (!is_cr0_write_valid(vcpu, value)) {
pr_err("Invalid cr0 write operation from guest");
vcpu_inject_gp(vcpu, 0U);
} else {
uint64_t effective_cr0 = (value & ~cr0_reserved_bits_mask) | cr0_rsv_bits_guest_value;
uint64_t mask, tmp;
uint32_t entry_ctrls;
uint64_t cr0_changed_bits = vcpu_get_cr0(vcpu) ^ effective_cr0;
if ((cr0_changed_bits & CR0_PG) != 0UL) {
/* PG bit changes */
if ((effective_cr0 & CR0_PG) != 0UL) {
/* Enable paging */
if ((vcpu_get_efer(vcpu) & MSR_IA32_EFER_LME_BIT) != 0UL) {
/* Enable long mode */
pr_dbg("VMM: Enable long mode");
entry_ctrls = exec_vmread32(VMX_ENTRY_CONTROLS);
entry_ctrls |= VMX_ENTRY_CTLS_IA32E_MODE;
exec_vmwrite32(VMX_ENTRY_CONTROLS, entry_ctrls);
vcpu_set_efer(vcpu, vcpu_get_efer(vcpu) | MSR_IA32_EFER_LMA_BIT);
} else {
pr_dbg("VMM: NOT Enable long mode");
if (is_pae(vcpu)) {
/* enabled PAE from paging disabled */
if (load_pdptrs(vcpu) != 0) {
err_found = true;
vcpu_inject_gp(vcpu, 0U);
}
}
}
} else {
/* Disable paging */
pr_dbg("disable paginge");
if ((vcpu_get_efer(vcpu) & MSR_IA32_EFER_LME_BIT) != 0UL) {
/* Disable long mode */
pr_dbg("VMM: Disable long mode");
entry_ctrls = exec_vmread32(VMX_ENTRY_CONTROLS);
entry_ctrls &= ~VMX_ENTRY_CTLS_IA32E_MODE;
exec_vmwrite32(VMX_ENTRY_CONTROLS, entry_ctrls);
vcpu_set_efer(vcpu, vcpu_get_efer(vcpu) & ~MSR_IA32_EFER_LMA_BIT);
}
}
}
if (!err_found) {
/* If CR0.CD or CR0.NW get cr0_changed_bits */
if ((cr0_changed_bits & CR0_TRAP_AND_EMULATE_BITS) != 0UL) {
/* No action if only CR0.NW is changed */
if ((cr0_changed_bits & CR0_CD) != 0UL) {
if ((effective_cr0 & CR0_CD) != 0UL) {
/*
* When the guest requests to set CR0.CD, we don't allow
* guest's CR0.CD to be actually set, instead, we write guest
* IA32_PAT with all-UC entries to emulate the cache
* disabled behavior
*/
exec_vmwrite64(VMX_GUEST_IA32_PAT_FULL, PAT_ALL_UC_VALUE);
} else {
/* Restore IA32_PAT to enable cache again */
exec_vmwrite64(VMX_GUEST_IA32_PAT_FULL,
vcpu_get_guest_msr(vcpu, MSR_IA32_PAT));
}
}
}
if ((cr0_changed_bits & (CR0_PG | CR0_WP | CR0_CD)) != 0UL) {
vcpu_make_request(vcpu, ACRN_REQUEST_EPT_FLUSH);
}
mask = cr0_trap_and_passthru_mask | cr0_passthru_mask;
tmp = (initial_guest_cr0 & ~mask) | (effective_cr0 & mask);
exec_vmwrite(VMX_GUEST_CR0, tmp);
exec_vmwrite(VMX_CR0_READ_SHADOW, effective_cr0);
/* clear read cache, next time read should from VMCS */
bitmap_clear_nolock(CPU_REG_CR0, &vcpu->reg_cached);
pr_dbg("VMM: Try to write %016lx, allow to write 0x%016lx to CR0", effective_cr0, tmp);
}
}
}
static inline bool is_valid_cr4(uint64_t cr4)
{
return (cr4 & cr4_reserved_bits_mask) == cr4_rsv_bits_guest_value;
}
/*
* TODO: Implement more comprhensive check here.
*/
bool is_valid_cr0_cr4(uint64_t cr0, uint64_t cr4)
{
return is_valid_cr4(cr4) & is_valid_cr0(cr0);
}
static bool is_cr4_write_valid(struct acrn_vcpu *vcpu, uint64_t cr4)
{
bool ret = true;
if (!is_valid_cr4(cr4) || (is_long_mode(vcpu) && ((cr4 & CR4_PAE) == 0UL))) {
ret = false;
}
return ret;
}
/*
* Handling of CR4:
* Assume "unrestricted guest" feature is supported by vmx.
*
* For CR4, if a guest attempts to change the reserved bits, a #GP fault is injected.
* This includes hardware reserved bits in VMX operation (not flexible bits),
* and CR4_EMULATED_RESERVE_BITS, or check with cr4_reserved_bits_mask.
*/
static void vmx_write_cr4(struct acrn_vcpu *vcpu, uint64_t cr4)
{
bool err_found = false;
if (!is_cr4_write_valid(vcpu, cr4)) {
pr_err("Invalid cr4 write operation from guest");
vcpu_inject_gp(vcpu, 0U);
} else {
uint64_t mask, tmp;
uint64_t cr4_changed_bits = vcpu_get_cr4(vcpu) ^ cr4;
if ((cr4_changed_bits & CR4_TRAP_AND_PASSTHRU_BITS) != 0UL) {
if (((cr4 & CR4_PAE) != 0UL) && (is_paging_enabled(vcpu)) && (!is_long_mode(vcpu))) {
if (load_pdptrs(vcpu) != 0) {
err_found = true;
pr_dbg("Err found,cr4:0xlx,cr0:0x%lx ", cr4, vcpu_get_cr0(vcpu));
vcpu_inject_gp(vcpu, 0U);
}
}
vcpu_make_request(vcpu, ACRN_REQUEST_EPT_FLUSH);
}
if (!err_found && ((cr4_changed_bits & CR4_PCIDE) != 0UL)) {
/* MOV to CR4 causes a general-protection exception (#GP) if it would change
* CR4.PCIDE from 0 to 1 and either IA32_EFER.LMA = 0 or CR3[11:0] != 000H
*/
if ((cr4 & CR4_PCIDE) != 0UL) {
uint64_t guest_cr3 = exec_vmread(VMX_GUEST_CR3);
if ((!is_long_mode(vcpu)) || ((guest_cr3 & 0xFFFUL) != 0UL)) {
pr_dbg("Failed to enable CR4.PCID, cr4:0x%lx, cr4_changed_bits:0x%lx,vcpu_cr4:0x%lx cr3:0x%lx",
cr4, cr4_changed_bits, vcpu_get_cr4(vcpu), guest_cr3);
err_found = true;
vcpu_inject_gp(vcpu, 0U);
}
}
}
if (!err_found && ((cr4_changed_bits & CR4_KL) != 0UL)) {
if ((cr4 & CR4_KL) != 0UL) {
vcpu->arch.cr4_kl_enabled = true;
load_iwkey(vcpu);
} else {
vcpu->arch.cr4_kl_enabled = false;
}
}
if (!err_found) {
/*
* Update the passthru bits.
*/
mask = cr4_trap_and_passthru_mask | cr4_passthru_mask;
tmp = (initial_guest_cr4 & ~mask) | (cr4 & mask);
/*
* For all reserved bits (including CR4_EMULATED_RESERVE_BITS), we came here because
* the guest is not changing them.
*/
exec_vmwrite(VMX_GUEST_CR4, tmp);
exec_vmwrite(VMX_CR4_READ_SHADOW, cr4);
/* clear read cache, next time read should from VMCS */
bitmap_clear_nolock(CPU_REG_CR4, &vcpu->reg_cached);
pr_dbg("VMM: Try to write %016lx, allow to write 0x%016lx to CR4", cr4, tmp);
}
}
}
void init_cr0_cr4_flexible_bits(void)
{
uint64_t cr0_flexible_bits;
uint64_t cr4_flexible_bits;
uint64_t fixed0, fixed1;
/* make sure following MACROs don't have any overlapped set bit.
*/
ASSERT(((CR0_PASSTHRU_BITS ^ CR0_TRAP_AND_PASSTHRU_BITS) ^ CR0_TRAP_AND_EMULATE_BITS) ==
(CR0_PASSTHRU_BITS | CR0_TRAP_AND_PASSTHRU_BITS | CR0_TRAP_AND_EMULATE_BITS));
ASSERT(((CR4_PASSTHRU_BITS ^ CR4_TRAP_AND_PASSTHRU_BITS) ^ CR4_TRAP_AND_EMULATE_BITS) ==
(CR4_PASSTHRU_BITS | CR4_TRAP_AND_PASSTHRU_BITS | CR4_TRAP_AND_EMULATE_BITS));
/* Read the CR0 fixed0 / fixed1 MSR registers */
fixed0 = msr_read(MSR_IA32_VMX_CR0_FIXED0);
fixed1 = msr_read(MSR_IA32_VMX_CR0_FIXED1);
pr_dbg("%s:cr0 fixed0 = 0x%016lx, fixed1 = 0x%016lx", __func__, fixed0, fixed1);
cr0_flexible_bits = (fixed0 ^ fixed1);
/*
* HW reports fixed bits for CR0_PG & CR0_PE, but do not check the violation.
* ACRN needs to set them for (unrestricted) guest, and therefore view them as
* flexible bits.
*/
cr0_flexible_bits |= (CR0_PE | CR0_PG);
cr0_passthru_mask &= cr0_flexible_bits;
cr0_trap_and_passthru_mask &= cr0_flexible_bits;
cr0_reserved_bits_mask = ~(cr0_passthru_mask | cr0_trap_and_passthru_mask | CR0_TRAP_AND_EMULATE_BITS);
/*
* cr0_rsv_bits_guest_value should be sync with always ON bits (1 in both FIXED0/FIXED1 MSRs).
* Refer SDM Appendix A.7
*/
cr0_rsv_bits_guest_value = (fixed0 & ~cr0_flexible_bits);
initial_guest_cr0 = (cr0_rsv_bits_guest_value & ~CR0_EMULATED_RESERVE_BITS) | CR0_EMRSV_BITS_PHYS_VALUE;
cr0_rsv_bits_guest_value = (cr0_rsv_bits_guest_value & ~CR0_EMULATED_RESERVE_BITS) | CR0_EMRSV_BITS_VIRT_VALUE;
pr_dbg("cr0_flexible_bits:0x%lx, cr0_passthru_mask:%lx, cr0_trap_and_passthru_mask:%lx.\n",
cr0_flexible_bits, cr0_passthru_mask, cr0_trap_and_passthru_mask);
pr_dbg("cr0_reserved_bits_mask:%lx, cr0_rsv_bits_guest_value:%lx, initial_guest_cr0:%lx.\n",
cr0_reserved_bits_mask, cr0_rsv_bits_guest_value, initial_guest_cr0);
/* Read the CR4 fixed0 / fixed1 MSR registers */
fixed0 = msr_read(MSR_IA32_VMX_CR4_FIXED0);
fixed1 = msr_read(MSR_IA32_VMX_CR4_FIXED1);
pr_dbg("%s:cr4 fixed0 = 0x%016lx, fixed1 = 0x%016lx", __func__, fixed0, fixed1);
cr4_flexible_bits = (fixed0 ^ fixed1);
cr4_passthru_mask &= cr4_flexible_bits;
cr4_trap_and_passthru_mask &= cr4_flexible_bits;
/*
* vcpuid should always consult cr4_reserved_bits_mask when reporting capability.
*
* The guest value of reserved bits are likely identical to fixed bits, but certains
* exceptions may be applied, i.e. for CR4_EMULATED_RESERVE_BITS.
*/
cr4_reserved_bits_mask = ~(cr4_passthru_mask | cr4_trap_and_passthru_mask | CR4_TRAP_AND_EMULATE_BITS);
/*
* cr4_reserved_bits_value should be sync with always ON bits (1 in both FIXED0/FIXED1 MSRs).
* Refer SDM Appendix A.8
*/
cr4_rsv_bits_guest_value = (fixed0 & ~cr4_flexible_bits);
#ifdef CONFIG_NVMX_ENABLED
cr4_rsv_bits_guest_value &= ~CR4_VMXE;
#endif
initial_guest_cr4 = (cr4_rsv_bits_guest_value & ~CR4_EMULATED_RESERVE_BITS) | CR4_EMRSV_BITS_PHYS_VALUE;
cr4_rsv_bits_guest_value = (cr4_rsv_bits_guest_value & ~CR4_EMULATED_RESERVE_BITS) | CR4_EMRSV_BITS_VIRT_VALUE;
pr_dbg("cr4_flexible_bits:0x%lx, cr4_passthru_mask:0x%lx, cr4_trap_and_passthru_mask:0x%lx.",
cr4_flexible_bits, cr4_passthru_mask, cr4_trap_and_passthru_mask);
pr_dbg("cr4_reserved_bits_mask:%lx, cr4_rsv_bits_guest_value:%lx, initial_guest_cr4:%lx.\n",
cr4_reserved_bits_mask, cr4_rsv_bits_guest_value, initial_guest_cr4);
}
void init_cr0_cr4_host_guest_mask(void)
{
/*
* "1" means the bit is trapped by host, and "0" means passthru to guest..
*/
exec_vmwrite(VMX_CR0_GUEST_HOST_MASK, ~cr0_passthru_mask); /* all bits except passthrubits are trapped */
pr_dbg("CR0 guest-host mask value: 0x%016lx", ~cr0_passthru_mask);
exec_vmwrite(VMX_CR4_GUEST_HOST_MASK, ~cr4_passthru_mask); /* all bits except passthru bits are trapped */
pr_dbg("CR4 guest-host mask value: 0x%016lx", ~cr4_passthru_mask);
}
uint64_t vcpu_get_cr0(struct acrn_vcpu *vcpu)
{
struct run_context *ctx = &vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (bitmap_test_and_set_nolock(CPU_REG_CR0, &vcpu->reg_cached) == 0) {
ctx->cr0 = (exec_vmread(VMX_CR0_READ_SHADOW) & ~cr0_passthru_mask) |
(exec_vmread(VMX_GUEST_CR0) & cr0_passthru_mask);
}
return ctx->cr0;
}
void vcpu_set_cr0(struct acrn_vcpu *vcpu, uint64_t val)
{
pr_dbg("%s, value: 0x%016lx rip: %016lx", __func__, val, vcpu_get_rip(vcpu));
vmx_write_cr0(vcpu, val);
}
uint64_t vcpu_get_cr2(const struct acrn_vcpu *vcpu)
{
return vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.cr2;
}
void vcpu_set_cr2(struct acrn_vcpu *vcpu, uint64_t val)
{
vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.cr2 = val;
}
/* This API shall be called after vCPU is created. */
uint64_t vcpu_get_cr4(struct acrn_vcpu *vcpu)
{
struct run_context *ctx = &vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (bitmap_test_and_set_nolock(CPU_REG_CR4, &vcpu->reg_cached) == 0) {
ctx->cr4 = (exec_vmread(VMX_CR4_READ_SHADOW) & ~cr4_passthru_mask) |
(exec_vmread(VMX_GUEST_CR4) & cr4_passthru_mask);
}
return ctx->cr4;
}
void vcpu_set_cr4(struct acrn_vcpu *vcpu, uint64_t val)
{
pr_dbg("%s, value: 0x%016lx rip: %016lx", __func__, val, vcpu_get_rip(vcpu));
vmx_write_cr4(vcpu, val);
}
int32_t cr_access_vmexit_handler(struct acrn_vcpu *vcpu)
{
uint64_t reg;
uint32_t idx;
uint64_t exit_qual;
int32_t ret = 0;
exit_qual = vcpu->arch.exit_qualification;
idx = (uint32_t)vm_exit_cr_access_reg_idx(exit_qual);
ASSERT((idx <= 15U), "index out of range");
reg = vcpu_get_gpreg(vcpu, idx);
switch ((vm_exit_cr_access_type(exit_qual) << 4U) | vm_exit_cr_access_cr_num(exit_qual)) {
case 0x00UL:
/* mov to cr0 */
vcpu_set_cr0(vcpu, reg);
break;
case 0x04UL:
/* mov to cr4 */
vcpu_set_cr4(vcpu, reg);
break;
default:
ASSERT(false, "Unhandled CR access");
ret = -EINVAL;
break;
}
TRACE_2L(TRACE_VMEXIT_CR_ACCESS, vm_exit_cr_access_type(exit_qual),
vm_exit_cr_access_cr_num(exit_qual));
return ret;
}
uint64_t get_cr4_reserved_bits(void)
{
return cr4_reserved_bits_mask;
}