acrn-hypervisor/devicemodel/core/vmmapi.c
Victor Sun 6071234337 HV: use term of UUID
The code mixed the usage on term of UUID and GUID, now use UUID to make
code more consistent, also will use lowercase (i.e. uuid) in variable name
definition.

Tracked-On: #2291

Signed-off-by: Victor Sun <victor.sun@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
2019-04-12 13:45:32 +08:00

642 lines
13 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "vmmapi.h"
#include "mevent.h"
#include "dm.h"
#include "pci_core.h"
#define MAP_NOCORE 0
#define MAP_ALIGNED_SUPER 0
/*
* Size of the guard region before and after the virtual address space
* mapping the guest physical memory. This must be a multiple of the
* superpage size for performance reasons.
*/
#define VM_MMAP_GUARD_SIZE (4 * MB)
#define SUPPORT_VHM_API_VERSION_MAJOR 1
#define SUPPORT_VHM_API_VERSION_MINOR 0
static int
check_api(int fd)
{
struct api_version api_version;
int error;
error = ioctl(fd, IC_GET_API_VERSION, &api_version);
if (error) {
fprintf(stderr, "failed to get vhm api version\n");
return -1;
}
if (api_version.major_version != SUPPORT_VHM_API_VERSION_MAJOR ||
api_version.minor_version != SUPPORT_VHM_API_VERSION_MINOR) {
fprintf(stderr, "not support vhm api version\n");
return -1;
}
printf("VHM api version %d.%d\n", api_version.major_version,
api_version.minor_version);
return 0;
}
static int devfd = -1;
struct vmctx *
vm_create(const char *name, uint64_t req_buf)
{
struct vmctx *ctx;
struct acrn_create_vm create_vm;
int error, retry = 10;
uuid_t vm_uuid;
struct stat tmp_st;
memset(&create_vm, 0, sizeof(struct acrn_create_vm));
ctx = calloc(1, sizeof(struct vmctx) + strnlen(name, PATH_MAX) + 1);
assert(ctx != NULL);
assert(devfd == -1);
if (stat("/dev/acrn_vhm", &tmp_st) == 0) {
devfd = open("/dev/acrn_vhm", O_RDWR|O_CLOEXEC);
} else if (stat("/dev/acrn_hsm", &tmp_st) == 0) {
devfd = open("/dev/acrn_hsm", O_RDWR|O_CLOEXEC);
} else {
devfd = -1;
}
if (devfd == -1) {
fprintf(stderr, "Could not open /dev/acrn_vhm\n");
goto err;
}
if (check_api(devfd) < 0)
goto err;
if (guest_uuid_str == NULL)
guest_uuid_str = "d2795438-25d6-11e8-864e-cb7a18b34643";
error = uuid_parse(guest_uuid_str, vm_uuid);
if (error != 0)
goto err;
/* save vm uuid to ctx */
uuid_copy(ctx->vm_uuid, vm_uuid);
/* Pass uuid as parameter of create vm*/
uuid_copy(create_vm.uuid, vm_uuid);
ctx->fd = devfd;
ctx->lowmem_limit = 2 * GB;
ctx->highmem_gpa_base = PCI_EMUL_MEMLIMIT64;
ctx->name = (char *)(ctx + 1);
strncpy(ctx->name, name, strnlen(name, PATH_MAX) + 1);
/* Set trusty enable flag */
if (trusty_enabled)
create_vm.vm_flag |= GUEST_FLAG_SECURE_WORLD_ENABLED;
else
create_vm.vm_flag &= (~GUEST_FLAG_SECURE_WORLD_ENABLED);
if (lapic_pt) {
create_vm.vm_flag |= GUEST_FLAG_LAPIC_PASSTHROUGH;
create_vm.vm_flag |= GUEST_FLAG_RT;
create_vm.vm_flag |= GUEST_FLAG_IO_COMPLETION_POLLING;
} else {
create_vm.vm_flag &= (~GUEST_FLAG_LAPIC_PASSTHROUGH);
create_vm.vm_flag &= (~GUEST_FLAG_IO_COMPLETION_POLLING);
}
if (is_rtvm) {
create_vm.vm_flag |= GUEST_FLAG_RT;
create_vm.vm_flag |= GUEST_FLAG_IO_COMPLETION_POLLING;
}
create_vm.req_buf = req_buf;
while (retry > 0) {
error = ioctl(ctx->fd, IC_CREATE_VM, &create_vm);
if (error == 0)
break;
usleep(500000);
retry--;
}
if (error) {
fprintf(stderr, "failed to create VM %s\n", ctx->name);
goto err;
}
ctx->vmid = create_vm.vmid;
return ctx;
err:
free(ctx);
return NULL;
}
int
vm_create_ioreq_client(struct vmctx *ctx)
{
return ioctl(ctx->fd, IC_CREATE_IOREQ_CLIENT, 0);
}
int
vm_destroy_ioreq_client(struct vmctx *ctx)
{
return ioctl(ctx->fd, IC_DESTROY_IOREQ_CLIENT, ctx->ioreq_client);
}
int
vm_attach_ioreq_client(struct vmctx *ctx)
{
int error;
error = ioctl(ctx->fd, IC_ATTACH_IOREQ_CLIENT, ctx->ioreq_client);
if (error) {
fprintf(stderr, "attach ioreq client return %d "
"(1 = destroying, could be triggered by Power State "
"change, others = error)\n", error);
return error;
}
return 0;
}
int
vm_notify_request_done(struct vmctx *ctx, int vcpu)
{
int error;
struct ioreq_notify notify;
bzero(&notify, sizeof(notify));
notify.client_id = ctx->ioreq_client;
notify.vcpu = vcpu;
error = ioctl(ctx->fd, IC_NOTIFY_REQUEST_FINISH, &notify);
if (error) {
fprintf(stderr, "failed: notify request finish\n");
return -1;
}
return 0;
}
void
vm_destroy(struct vmctx *ctx)
{
if (!ctx)
return;
ioctl(ctx->fd, IC_DESTROY_VM, NULL);
close(ctx->fd);
free(ctx);
devfd = -1;
}
int
vm_parse_memsize(const char *optarg, size_t *ret_memsize)
{
char *endptr;
size_t optval;
int shift;
optval = strtoul(optarg, &endptr, 0);
switch (tolower((unsigned char)*endptr)) {
case 'g':
shift = 30;
break;
case 'm':
shift = 20;
break;
case 'k':
shift = 10;
break;
case 'b':
case '\0': /* No unit. */
shift = 0;
default:
/* Unrecognized unit. */
return -1;
}
optval = optval << shift;
if (optval < 128 * MB)
return -1;
*ret_memsize = optval;
return 0;
}
uint32_t
vm_get_lowmem_limit(struct vmctx *ctx)
{
return ctx->lowmem_limit;
}
void
vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
{
ctx->lowmem_limit = limit;
}
int
vm_map_memseg_vma(struct vmctx *ctx, size_t len, vm_paddr_t gpa,
uint64_t vma, int prot)
{
struct vm_memmap memmap;
bzero(&memmap, sizeof(struct vm_memmap));
memmap.type = VM_MEMMAP_SYSMEM;
memmap.using_vma = 1;
memmap.vma_base = vma;
memmap.len = len;
memmap.gpa = gpa;
memmap.prot = prot;
return ioctl(ctx->fd, IC_SET_MEMSEG, &memmap);
}
int
vm_setup_memory(struct vmctx *ctx, size_t memsize)
{
/*
* If 'memsize' cannot fit entirely in the 'lowmem' segment then
* create another 'highmem' segment above 4GB for the remainder.
*/
if (memsize > ctx->lowmem_limit) {
ctx->lowmem = ctx->lowmem_limit;
ctx->highmem = memsize - ctx->lowmem_limit;
} else {
ctx->lowmem = memsize;
ctx->highmem = 0;
}
ctx->biosmem = high_bios_size();
return hugetlb_setup_memory(ctx);
}
void
vm_unsetup_memory(struct vmctx *ctx)
{
/*
* For security reason, clean the VM's memory region
* to avoid secret information leaking in below case:
* After a UOS is destroyed, the memory will be reclaimed,
* then if the new UOS starts, that memory region may be
* allocated the new UOS, the previous UOS sensitive data
* may be leaked to the new UOS if the memory is not cleared.
*
*/
bzero((void *)ctx->baseaddr, ctx->lowmem);
if (ctx->highmem > 0) {
bzero((void *)(ctx->baseaddr + ctx->highmem_gpa_base),
ctx->highmem);
}
hugetlb_unsetup_memory(ctx);
}
/*
* Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
* the lowmem or highmem regions.
*
* In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
* The instruction emulation code depends on this behavior.
*/
void *
vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
{
if (ctx->lowmem > 0) {
if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
gaddr + len <= ctx->lowmem)
return (ctx->baseaddr + gaddr);
}
if (ctx->highmem > 0) {
if (gaddr >= ctx->highmem_gpa_base) {
if (gaddr < ctx->highmem_gpa_base + ctx->highmem &&
len <= ctx->highmem &&
gaddr + len <= ctx->highmem_gpa_base + ctx->highmem)
return (ctx->baseaddr + gaddr);
}
}
return NULL;
}
size_t
vm_get_lowmem_size(struct vmctx *ctx)
{
return ctx->lowmem;
}
size_t
vm_get_highmem_size(struct vmctx *ctx)
{
return ctx->highmem;
}
void *
vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
{
return MAP_FAILED;
}
int
vm_run(struct vmctx *ctx)
{
int error;
error = ioctl(ctx->fd, IC_START_VM, &ctx->vmid);
return error;
}
void
vm_pause(struct vmctx *ctx)
{
ioctl(ctx->fd, IC_PAUSE_VM, &ctx->vmid);
}
void
vm_reset(struct vmctx *ctx)
{
ioctl(ctx->fd, IC_RESET_VM, &ctx->vmid);
}
void
vm_clear_ioreq(struct vmctx *ctx)
{
ioctl(ctx->fd, IC_CLEAR_VM_IOREQ, NULL);
}
static int suspend_mode = VM_SUSPEND_NONE;
void
vm_set_suspend_mode(enum vm_suspend_how how)
{
suspend_mode = how;
}
int
vm_get_suspend_mode(void)
{
return suspend_mode;
}
int
vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
{
vm_set_suspend_mode(how);
mevent_notify();
return 0;
}
int
vm_apicid2vcpu(struct vmctx *ctx, int apicid)
{
/*
* The apic id associated with the 'vcpu' has the same numerical value
* as the 'vcpu' itself.
*/
return apicid;
}
int
vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
{
struct acrn_msi_entry msi;
bzero(&msi, sizeof(msi));
msi.msi_addr = addr;
msi.msi_data = msg;
return ioctl(ctx->fd, IC_INJECT_MSI, &msi);
}
int
vm_set_gsi_irq(struct vmctx *ctx, int gsi, uint32_t operation)
{
struct acrn_irqline_ops op;
uint64_t *req = (uint64_t *)&op;
op.op = operation;
op.gsi = (uint32_t)gsi;
return ioctl(ctx->fd, IC_SET_IRQLINE, *req);
}
int
vm_assign_ptdev(struct vmctx *ctx, int bus, int slot, int func)
{
uint16_t bdf;
bdf = ((bus & 0xff) << 8) | ((slot & 0x1f) << 3) |
(func & 0x7);
return ioctl(ctx->fd, IC_ASSIGN_PTDEV, &bdf);
}
int
vm_unassign_ptdev(struct vmctx *ctx, int bus, int slot, int func)
{
uint16_t bdf;
bdf = ((bus & 0xff) << 8) | ((slot & 0x1f) << 3) |
(func & 0x7);
return ioctl(ctx->fd, IC_DEASSIGN_PTDEV, &bdf);
}
int
vm_map_ptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
struct vm_memmap memmap;
bzero(&memmap, sizeof(struct vm_memmap));
memmap.type = VM_MMIO;
memmap.len = len;
memmap.gpa = gpa;
memmap.hpa = hpa;
memmap.prot = PROT_ALL;
return ioctl(ctx->fd, IC_SET_MEMSEG, &memmap);
}
int
vm_unmap_ptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
struct vm_memmap memmap;
bzero(&memmap, sizeof(struct vm_memmap));
memmap.type = VM_MMIO;
memmap.len = len;
memmap.gpa = gpa;
memmap.hpa = hpa;
memmap.prot = PROT_ALL;
return ioctl(ctx->fd, IC_UNSET_MEMSEG, &memmap);
}
int
vm_setup_ptdev_msi(struct vmctx *ctx, struct acrn_vm_pci_msix_remap *msi_remap)
{
if (!msi_remap)
return -1;
return ioctl(ctx->fd, IC_VM_PCI_MSIX_REMAP, msi_remap);
}
int
vm_set_ptdev_msix_info(struct vmctx *ctx, struct ic_ptdev_irq *ptirq)
{
if (!ptirq)
return -1;
return ioctl(ctx->fd, IC_SET_PTDEV_INTR_INFO, ptirq);
}
int
vm_reset_ptdev_msix_info(struct vmctx *ctx, uint16_t virt_bdf, uint16_t phys_bdf,
int vector_count)
{
struct ic_ptdev_irq ptirq;
bzero(&ptirq, sizeof(ptirq));
ptirq.type = IRQ_MSIX;
ptirq.virt_bdf = virt_bdf;
ptirq.phys_bdf = phys_bdf;
ptirq.msix.vector_cnt = vector_count;
return ioctl(ctx->fd, IC_RESET_PTDEV_INTR_INFO, &ptirq);
}
int
vm_set_ptdev_intx_info(struct vmctx *ctx, uint16_t virt_bdf, uint16_t phys_bdf,
int virt_pin, int phys_pin, bool pic_pin)
{
struct ic_ptdev_irq ptirq;
bzero(&ptirq, sizeof(ptirq));
ptirq.type = IRQ_INTX;
ptirq.virt_bdf = virt_bdf;
ptirq.phys_bdf = phys_bdf;
ptirq.intx.virt_pin = virt_pin;
ptirq.intx.phys_pin = phys_pin;
ptirq.intx.is_pic_pin = pic_pin;
return ioctl(ctx->fd, IC_SET_PTDEV_INTR_INFO, &ptirq);
}
int
vm_reset_ptdev_intx_info(struct vmctx *ctx, int virt_pin, bool pic_pin)
{
struct ic_ptdev_irq ptirq;
bzero(&ptirq, sizeof(ptirq));
ptirq.type = IRQ_INTX;
ptirq.intx.virt_pin = virt_pin;
ptirq.intx.is_pic_pin = pic_pin;
return ioctl(ctx->fd, IC_RESET_PTDEV_INTR_INFO, &ptirq);
}
int
vm_create_vcpu(struct vmctx *ctx, uint16_t vcpu_id)
{
struct acrn_create_vcpu cv;
int error;
bzero(&cv, sizeof(struct acrn_create_vcpu));
cv.vcpu_id = vcpu_id;
error = ioctl(ctx->fd, IC_CREATE_VCPU, &cv);
return error;
}
int
vm_set_vcpu_regs(struct vmctx *ctx, struct acrn_set_vcpu_regs *vcpu_regs)
{
return ioctl(ctx->fd, IC_SET_VCPU_REGS, vcpu_regs);
}
int
vm_get_device_fd(struct vmctx *ctx)
{
return ctx->fd;
}
int
vm_get_cpu_state(struct vmctx *ctx, void *state_buf)
{
return ioctl(ctx->fd, IC_PM_GET_CPU_STATE, state_buf);
}
int
vm_intr_monitor(struct vmctx *ctx, void *intr_buf)
{
return ioctl(ctx->fd, IC_VM_INTR_MONITOR, intr_buf);
}
int
vm_ioeventfd(struct vmctx *ctx, struct acrn_ioeventfd *args)
{
return ioctl(ctx->fd, IC_EVENT_IOEVENTFD, args);
}
int
vm_irqfd(struct vmctx *ctx, struct acrn_irqfd *args)
{
return ioctl(ctx->fd, IC_EVENT_IRQFD, args);
}