acrn-hypervisor/devicemodel/core/mem.c
Peter Fang 82fa9946e0 dm: safely access MMIO hint in MMIO emulation
mmio_hint in mem.c can potentially be accessed concurrently in
emulate_mem() because it only holds a read lock. Use a local variable to
make sure the same entry address is used throughout the function. Since
it only serves as a hint, it's okay if the function does not use the
most up-to-date version of mmio_hint, as long as mmio_hint is accessed
atomically.

Explicitly enforce natural alignment on mmio_hint to guarantee atomic
accesses on x86 and increase code portability, even though compilers
most likely always do it.

Entries in the RB tree are only removed in unregister_mem_int() while
holding a write lock, so accessing mmio_hint while holding a read lock
is safe.

Tracked-On: #2902
Signed-off-by: Peter Fang <peter.fang@intel.com>
Reviewed-by: Shuo A Liu <shuo.a.liu@intel.com>
2019-04-22 15:18:21 +08:00

281 lines
6.6 KiB
C

/*-
* Copyright (c) 2012 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Memory ranges are represented with an RB tree. On insertion, the range
* is checked for overlaps. On lookup, the key has the same base and limit
* so it can be searched within the range.
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <pthread.h>
#include "vmm.h"
#include "mem.h"
#include "tree.h"
#define MEMNAMESZ (80)
struct mmio_rb_range {
RB_ENTRY(mmio_rb_range) mr_link; /* RB tree links */
struct mem_range mr_param;
uint64_t mr_base;
uint64_t mr_end;
};
static RB_HEAD(mmio_rb_tree, mmio_rb_range) mmio_rb_root, mmio_rb_fallback;
RB_PROTOTYPE_STATIC(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
/*
* Per-VM cache. Since most accesses from a vCPU will be to
* consecutive addresses in a range, it makes sense to cache the
* result of a lookup.
*/
static struct mmio_rb_range *mmio_hint __aligned(sizeof(struct mmio_rb_range *));
static pthread_rwlock_t mmio_rwlock;
static int
mmio_rb_range_compare(struct mmio_rb_range *a, struct mmio_rb_range *b)
{
if (a->mr_end < b->mr_base)
return -1;
else if (a->mr_base > b->mr_end)
return 1;
return 0;
}
static int
mmio_rb_lookup(struct mmio_rb_tree *rbt, uint64_t addr,
struct mmio_rb_range **entry)
{
struct mmio_rb_range find, *res;
find.mr_base = find.mr_end = addr;
res = RB_FIND(mmio_rb_tree, rbt, &find);
if (res != NULL) {
*entry = res;
return 0;
}
return -1;
}
static int
mmio_rb_add(struct mmio_rb_tree *rbt, struct mmio_rb_range *new)
{
struct mmio_rb_range *overlap;
overlap = RB_INSERT(mmio_rb_tree, rbt, new);
if (overlap != NULL) {
#ifdef RB_DEBUG
printf("overlap detected: new %lx:%lx, tree %lx:%lx\n",
new->mr_base, new->mr_end,
overlap->mr_base, overlap->mr_end);
#endif
return -1;
}
return 0;
}
#if RB_DEBUG
static void
mmio_rb_dump(struct mmio_rb_tree *rbt)
{
struct mmio_rb_range *np;
pthread_rwlock_rdlock(&mmio_rwlock);
RB_FOREACH(np, mmio_rb_tree, rbt) {
printf(" %lx:%lx, %s\n", np->mr_base, np->mr_end,
np->mr_param.name);
}
pthread_rwlock_unlock(&mmio_rwlock);
}
#endif
RB_GENERATE_STATIC(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
static int
mem_read(void *ctx, int vcpu, uint64_t gpa, uint64_t *rval, int size, void *arg)
{
int error;
struct mem_range *mr = arg;
error = (*mr->handler)(ctx, vcpu, MEM_F_READ, gpa, size,
rval, mr->arg1, mr->arg2);
return error;
}
static int
mem_write(void *ctx, int vcpu, uint64_t gpa, uint64_t wval, int size, void *arg)
{
int error;
struct mem_range *mr = arg;
error = (*mr->handler)(ctx, vcpu, MEM_F_WRITE, gpa, size,
&wval, mr->arg1, mr->arg2);
return error;
}
int
emulate_mem(struct vmctx *ctx, struct mmio_request *mmio_req)
{
uint64_t paddr = mmio_req->address;
int size = mmio_req->size;
struct mmio_rb_range *hint, *entry = NULL;
int err;
pthread_rwlock_rdlock(&mmio_rwlock);
/*
* First check the per-VM cache
*/
hint = mmio_hint;
if (hint && paddr >= hint->mr_base && paddr <= hint->mr_end)
entry = hint;
else if (mmio_rb_lookup(&mmio_rb_root, paddr, &entry) == 0)
/* Update the per-VM cache */
mmio_hint = entry;
else if (mmio_rb_lookup(&mmio_rb_fallback, paddr, &entry)) {
pthread_rwlock_unlock(&mmio_rwlock);
return -ESRCH;
}
pthread_rwlock_unlock(&mmio_rwlock);
assert(entry != NULL);
if (mmio_req->direction == REQUEST_READ)
err = mem_read(ctx, 0, paddr, (uint64_t *)&mmio_req->value,
size, &entry->mr_param);
else
err = mem_write(ctx, 0, paddr, mmio_req->value,
size, &entry->mr_param);
return err;
}
static int
register_mem_int(struct mmio_rb_tree *rbt, struct mem_range *memp)
{
struct mmio_rb_range *entry, *mrp;
int err;
err = 0;
mrp = malloc(sizeof(struct mmio_rb_range));
if (mrp != NULL) {
mrp->mr_param = *memp;
mrp->mr_base = memp->base;
mrp->mr_end = memp->base + memp->size - 1;
pthread_rwlock_wrlock(&mmio_rwlock);
if (mmio_rb_lookup(rbt, memp->base, &entry) != 0)
err = mmio_rb_add(rbt, mrp);
pthread_rwlock_unlock(&mmio_rwlock);
if (err)
free(mrp);
} else
err = -1;
return err;
}
int
register_mem(struct mem_range *memp)
{
return register_mem_int(&mmio_rb_root, memp);
}
int
register_mem_fallback(struct mem_range *memp)
{
return register_mem_int(&mmio_rb_fallback, memp);
}
static int
unregister_mem_int(struct mmio_rb_tree *rbt, struct mem_range *memp)
{
struct mem_range *mr;
struct mmio_rb_range *entry = NULL;
int err;
pthread_rwlock_wrlock(&mmio_rwlock);
err = mmio_rb_lookup(rbt, memp->base, &entry);
if (err == 0) {
mr = &entry->mr_param;
if (strncmp(mr->name, memp->name, MEMNAMESZ)) {
err = -1;
} else {
assert(mr->base == memp->base && mr->size == memp->size);
assert((mr->flags & MEM_F_IMMUTABLE) == 0);
RB_REMOVE(mmio_rb_tree, rbt, entry);
/* flush Per-VM cache */
if (mmio_hint == entry)
mmio_hint = NULL;
}
}
pthread_rwlock_unlock(&mmio_rwlock);
if (entry)
free(entry);
return err;
}
int
unregister_mem(struct mem_range *memp)
{
return unregister_mem_int(&mmio_rb_root, memp);
}
int
unregister_mem_fallback(struct mem_range *memp)
{
return unregister_mem_int(&mmio_rb_fallback, memp);
}
void
init_mem(void)
{
RB_INIT(&mmio_rb_root);
RB_INIT(&mmio_rb_fallback);
pthread_rwlock_init(&mmio_rwlock, NULL);
}