acrn-hypervisor/hypervisor/arch/x86/rdt.c
Vijay Dhanraj 92ee33b035 HV: Add MBA support in ACRN
This patch adds RDT MBA support to detect, configure and
and setup MBA throttle registers based on VM configuration.

Tracked-On: #3725
Signed-off-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
2020-03-04 17:33:50 +08:00

244 lines
6.6 KiB
C

/*
* Copyright (C) 2020 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <cpu.h>
#include <cpu_caps.h>
#include <cpufeatures.h>
#include <cpuid.h>
#include <errno.h>
#include <logmsg.h>
#include <rdt.h>
#include <bits.h>
#include <board.h>
#include <vm_config.h>
#include <msr.h>
static struct rdt_info res_cap_info[RDT_NUM_RESOURCES] = {
[RDT_RESOURCE_L3] = {
.cache = {
.bitmask = 0U,
.cbm_len = 0U,
},
.clos_max = 0U,
.res_id = RDT_RESID_L3,
.msr_base = MSR_IA32_L3_MASK_BASE,
.platform_clos_array = NULL
},
[RDT_RESOURCE_L2] = {
.cache = {
.bitmask = 0U,
.cbm_len = 0U,
},
.clos_max = 0U,
.res_id = RDT_RESID_L2,
.msr_base = MSR_IA32_L2_MASK_BASE,
.platform_clos_array = NULL
},
[RDT_RESOURCE_MBA] = {
.membw = {
.mba_max = 0U,
.delay_linear = true,
},
.clos_max = 0U,
.res_id = RDT_RESID_MBA,
.msr_base = MSR_IA32_MBA_MASK_BASE,
.platform_clos_array = NULL
},
};
const uint16_t hv_clos = 0U;
/* RDT features can support different numbers of CLOS. Set the lowers numerical
* clos value (platform_clos_num) that is common between the resources as
* each resource's clos max value to have consistent allocation.
*/
const uint16_t platform_clos_num = MAX_PLATFORM_CLOS_NUM;
#ifdef CONFIG_RDT_ENABLED
static void rdt_read_cat_capability(int res)
{
uint32_t eax = 0U, ebx = 0U, ecx = 0U, edx = 0U;
/* CPUID.(EAX=0x10,ECX=ResID):EAX[4:0] reports the length of CBM supported
* CPUID.(EAX=0x10,ECX=ResID):EBX[31:0] indicates shared cache mask bits
* that are used by other entities such as graphic and H/W outside processor.
* CPUID.(EAX=0x10,ECX=ResID):EDX[15:0] reports the maximun CLOS supported
*/
cpuid_subleaf(CPUID_RDT_ALLOCATION, res_cap_info[res].res_id, &eax, &ebx, &ecx, &edx);
res_cap_info[res].cache.cbm_len = (uint16_t)((eax & 0x1fU) + 1U);
res_cap_info[res].cache.bitmask = ebx;
res_cap_info[res].clos_max = (uint16_t)(edx & 0xffffU) + 1U;
}
static void rdt_read_mba_capability(int res)
{
uint32_t eax = 0U, ebx = 0U, ecx = 0U, edx = 0U;
/* CPUID.(EAX=0x10,ECX=ResID):EAX[11:0] reports maximum MBA throttling value supported
* CPUID.(EAX=0x10,ECX=ResID):EBX[31:0] reserved
* CPUID.(EAX=10H, ECX=ResID=3):ECX[2] reports if response of the delay values is linear
* CPUID.(EAX=0x10,ECX=ResID):EDX[15:0] reports the maximun CLOS supported
*/
cpuid_subleaf(CPUID_RDT_ALLOCATION, res_cap_info[res].res_id, &eax, &ebx, &ecx, &edx);
res_cap_info[res].membw.mba_max = (uint16_t)((eax & 0xfffU) + 1U);
res_cap_info[res].membw.delay_linear = ((ecx & 0x4U) != 0U) ? true : false;
res_cap_info[res].clos_max = (uint16_t)(edx & 0xffffU) + 1U;
}
int32_t init_rdt_cap_info(void)
{
uint8_t i;
uint32_t eax = 0U, ebx = 0U, ecx = 0U, edx = 0U;
int32_t ret = 0;
if (pcpu_has_cap(X86_FEATURE_RDT_A)) {
cpuid_subleaf(CPUID_RDT_ALLOCATION, 0U, &eax, &ebx, &ecx, &edx);
/* If HW supports L3 CAT, EBX[1] is set */
if ((ebx & 2U) != 0U) {
rdt_read_cat_capability(RDT_RESOURCE_L3);
}
/* If HW supports L2 CAT, EBX[2] is set */
if ((ebx & 4U) != 0U) {
rdt_read_cat_capability(RDT_RESOURCE_L2);
}
/* If HW supports MBA, EBX[3] is set */
if ((ebx & 8U) != 0U) {
rdt_read_mba_capability(RDT_RESOURCE_MBA);
}
for (i = 0U; i < RDT_NUM_RESOURCES; i++) {
/* If clos_max == 0, the resource is not supported
* so skip checking and updating the clos_max
*/
if (res_cap_info[i].clos_max > 0U) {
if ((platform_clos_num == 0U) || (res_cap_info[i].clos_max < platform_clos_num)) {
pr_err("Invalid Res_ID %d clos max:platform_clos_max=%d, res_clos_max=%d\n",
res_cap_info[i].res_id, platform_clos_num, res_cap_info[i].clos_max);
ret = -EINVAL;
break;
}
/*Store user configured platform clos mask and MSR in the rdt_info struct*/
if (res_cap_info[i].res_id == RDT_RESID_L3) {
res_cap_info[i].platform_clos_array = platform_l3_clos_array;
} else if (res_cap_info[i].res_id == RDT_RESID_L2) {
res_cap_info[i].platform_clos_array = platform_l2_clos_array;
} else if (res_cap_info[i].res_id == RDT_RESID_MBA) {
res_cap_info[i].platform_clos_array = platform_mba_clos_array;
} else {
res_cap_info[i].platform_clos_array = NULL;
}
}
}
}
return ret;
}
/*
* @pre res < RDT_NUM_RESOURCES
*/
static bool setup_res_clos_msr(uint16_t pcpu_id, uint16_t res, struct platform_clos_info *res_clos_info)
{
bool ret = true;
uint16_t i;
uint32_t msr_index;
uint64_t val;
for (i = 0U; i < platform_clos_num; i++) {
switch (res) {
case RDT_RESOURCE_L3:
case RDT_RESOURCE_L2:
if ((fls32(res_clos_info->clos_mask) >= res_cap_info[res].cache.cbm_len) ||
(res_clos_info->msr_index != (res_cap_info[res].msr_base + i))) {
ret = false;
pr_err("Fix CLOS %d mask=0x%x and(/or) MSR index=0x%x for Res_ID %d in board.c",
i, res_clos_info->clos_mask, res_clos_info->msr_index, res);
} else {
val = (uint64_t)res_clos_info->clos_mask;
}
break;
case RDT_RESOURCE_MBA:
if ((res_clos_info->mba_delay > res_cap_info[res].membw.mba_max) ||
(res_clos_info->msr_index != (res_cap_info[res].msr_base + i))) {
ret = false;
pr_err("Fix CLOS %d delay=0x%x and(/or) MSR index=0x%x for Res_ID %d in board.c",
i, res_clos_info->mba_delay, res_clos_info->msr_index, res);
} else {
val = (uint64_t)res_clos_info->mba_delay;
}
break;
default:
ret = false;
ASSERT(res < RDT_NUM_RESOURCES, "Support only 3 RDT resources. res=%d is invalid", res);
break;
}
if (!ret) {
break;
}
msr_index = res_clos_info->msr_index;
msr_write_pcpu(msr_index, val, pcpu_id);
res_clos_info++;
}
return ret;
}
bool setup_clos(uint16_t pcpu_id)
{
bool ret = true;
uint16_t i;
for (i = 0U; i < RDT_NUM_RESOURCES; i++) {
/* If clos_max == 0, the resource is not supported
* so skip setting up resource MSR.
*/
if (res_cap_info[i].clos_max > 0U) {
ret = setup_res_clos_msr(pcpu_id, i, res_cap_info[i].platform_clos_array);
if (!ret)
break;
}
}
if (ret) {
/* set hypervisor RDT resource clos */
msr_write_pcpu(MSR_IA32_PQR_ASSOC, clos2pqr_msr(hv_clos), pcpu_id);
}
return ret;
}
uint64_t clos2pqr_msr(uint16_t clos)
{
uint64_t pqr_assoc;
pqr_assoc = msr_read(MSR_IA32_PQR_ASSOC);
pqr_assoc = (pqr_assoc & 0xffffffffUL) | ((uint64_t)clos << 32U);
return pqr_assoc;
}
#else
uint64_t clos2pqr_msr(uint16_t clos)
{
(void)(clos);
return 0UL;
}
#endif
bool is_platform_rdt_capable(void)
{
bool ret = false;
if ((res_cap_info[RDT_RESOURCE_L3].clos_max > 0U) ||
(res_cap_info[RDT_RESOURCE_L2].clos_max > 0U) ||
(res_cap_info[RDT_RESOURCE_MBA].clos_max > 0U)) {
ret = true;
}
return ret;
}