acrn-hypervisor/hypervisor/arch/x86/guest/pm.c
Mingqiang Chi 02e7edc063 hv: Replace dynamic memory allocation for I/O bitmaps
-- Replace pointer with static memory for io_bitmap
  inside structure vm_arch.
-- Refine allow_guest_pio_access/deny_guest_pio_access

Tracked-On: #861
Signed-off-by: Mingqiang Chi <mingqiang.chi@intel.com>
Reviewed-by: Anthony Xu <anthony.xu@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
2018-09-12 09:20:07 +08:00

225 lines
5.1 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
int validate_pstate(struct vm *vm, uint64_t perf_ctl)
{
struct cpu_px_data *px_data;
int i, px_cnt;
if (is_vm0(vm)) {
return 0;
}
px_cnt = vm->pm.px_cnt;
px_data = vm->pm.px_data;
if ((px_cnt == 0) || (px_data == NULL)) {
return -1;
}
for (i = 0; i < px_cnt; i++) {
if ((px_data + i)->control == (perf_ctl & 0xffffUL)) {
return 0;
}
}
return -1;
}
static void vm_setup_cpu_px(struct vm *vm)
{
uint32_t px_data_size;
vm->pm.px_cnt = 0U;
(void)memset(vm->pm.px_data, 0U,
MAX_PSTATE * sizeof(struct cpu_px_data));
if ((boot_cpu_data.state_info.px_cnt == 0U)
|| (boot_cpu_data.state_info.px_data == NULL)) {
return;
}
ASSERT ((boot_cpu_data.state_info.px_cnt <= MAX_PSTATE),
"failed to setup cpu px");
vm->pm.px_cnt = boot_cpu_data.state_info.px_cnt;
px_data_size = ((uint32_t)vm->pm.px_cnt) * sizeof(struct cpu_px_data);
(void)memcpy_s(vm->pm.px_data, px_data_size,
boot_cpu_data.state_info.px_data, px_data_size);
}
static void vm_setup_cpu_cx(struct vm *vm)
{
uint32_t cx_data_size;
vm->pm.cx_cnt = 0U;
(void)memset(vm->pm.cx_data, 0U,
MAX_CSTATE * sizeof(struct cpu_cx_data));
if ((boot_cpu_data.state_info.cx_cnt == 0U)
|| (boot_cpu_data.state_info.cx_data == NULL)) {
return;
}
ASSERT ((boot_cpu_data.state_info.cx_cnt <= MAX_CX_ENTRY),
"failed to setup cpu cx");
vm->pm.cx_cnt = boot_cpu_data.state_info.cx_cnt;
cx_data_size = ((uint32_t)vm->pm.cx_cnt) * sizeof(struct cpu_cx_data);
/* please note pm.cx_data[0] is a empty space holder,
* pm.cx_data[1...MAX_CX_ENTRY] would be used to store cx entry datas.
*/
(void)memcpy_s(vm->pm.cx_data + 1, cx_data_size,
boot_cpu_data.state_info.cx_data, cx_data_size);
}
static inline void init_cx_port(struct vm *vm)
{
uint8_t cx_idx;
for (cx_idx = 2U; cx_idx <= vm->pm.cx_cnt; cx_idx++) {
struct cpu_cx_data *cx_data = vm->pm.cx_data + cx_idx;
if (cx_data->cx_reg.space_id == SPACE_SYSTEM_IO) {
uint16_t port = (uint16_t)cx_data->cx_reg.address;
allow_guest_pio_access(vm, port, 1U);
}
}
}
void vm_setup_cpu_state(struct vm *vm)
{
vm_setup_cpu_px(vm);
vm_setup_cpu_cx(vm);
init_cx_port(vm);
}
/* This function is for power management Sx state implementation,
* VM need to load the Sx state data to implement S3/S5.
*/
int vm_load_pm_s_state(struct vm *vm)
{
if ((boot_cpu_data.family == host_acpi_info.x86_family)
&& (boot_cpu_data.model == host_acpi_info.x86_model)) {
vm->pm.sx_state_data = (struct pm_s_state_data *)
&host_acpi_info.pm_s_state;
pr_info("System S3/S5 is supported.");
return 0;
} else {
vm->pm.sx_state_data = NULL;
pr_err("System S3/S5 is NOT supported.");
return -1;
}
}
static inline uint32_t s3_enabled(uint32_t pm1_cnt)
{
return pm1_cnt & (1U << BIT_SLP_EN);
}
static inline uint8_t get_slp_typx(uint32_t pm1_cnt)
{
return (uint8_t)((pm1_cnt & 0x1fffU) >> BIT_SLP_TYPx);
}
static uint32_t pm1ab_io_read(__unused struct vm_io_handler *hdlr,
__unused struct vm *vm, uint16_t addr, size_t width)
{
uint32_t val = pio_read(addr, width);
if (host_enter_s3_success == 0U) {
/* If host S3 enter failes, we should set BIT_WAK_STS
* bit for vm0 and let vm0 back from S3 failure path.
*/
if (addr == vm->pm.sx_state_data->pm1a_evt.address) {
val |= (1U << BIT_WAK_STS);
}
}
return val;
}
static void pm1ab_io_write(__unused struct vm_io_handler *hdlr,
__unused struct vm *vm, uint16_t addr, size_t width,
uint32_t v)
{
static uint32_t pm1a_cnt_ready = 0U;
if (width == 2U) {
uint8_t val = get_slp_typx(v);
if ((addr == vm->pm.sx_state_data->pm1a_cnt.address)
&& (val == vm->pm.sx_state_data->s3_pkg.val_pm1a)
&& (s3_enabled(v) != 0U)) {
if (vm->pm.sx_state_data->pm1b_cnt.address != 0UL) {
pm1a_cnt_ready = v;
} else {
enter_s3(vm, v, 0U);
}
return;
}
if ((addr == vm->pm.sx_state_data->pm1b_cnt.address)
&& (val == vm->pm.sx_state_data->s3_pkg.val_pm1b)
&& (s3_enabled(v) != 0U)) {
if (pm1a_cnt_ready != 0U) {
enter_s3(vm, pm1a_cnt_ready, v);
pm1a_cnt_ready = 0U;
} else {
/* the case broke ACPI spec */
pr_err("PM1B_CNT write error!");
}
return;
}
}
pio_write(v, addr, width);
}
static void
register_gas_io_handler(struct vm *vm, struct acpi_generic_address *gas)
{
uint8_t io_len[5] = {0, 1, 2, 4, 8};
struct vm_io_range gas_io;
if ((gas->address == 0UL)
|| (gas->space_id != SPACE_SYSTEM_IO)
|| (gas->access_size == 0U)
|| (gas->access_size > 4U)) {
return;
}
gas_io.flags = IO_ATTR_RW;
gas_io.base = (uint16_t)gas->address;
gas_io.len = io_len[gas->access_size];
register_io_emulation_handler(vm, &gas_io,
&pm1ab_io_read, &pm1ab_io_write);
pr_dbg("Enable PM1A trap for VM %d, port 0x%x, size %d\n",
vm->vm_id, gas_io.base, gas_io.len);
}
void register_pm1ab_handler(struct vm *vm)
{
struct pm_s_state_data *sx_data = vm->pm.sx_state_data;
register_gas_io_handler(vm, &(sx_data->pm1a_evt));
register_gas_io_handler(vm, &(sx_data->pm1b_evt));
register_gas_io_handler(vm, &(sx_data->pm1a_cnt));
register_gas_io_handler(vm, &(sx_data->pm1b_cnt));
}