acrn-hypervisor/hypervisor/dm/vpci/pci_pt.c
Shiqing Gao 97aeb7f4ff hv: pgtable: fix 'Use of function like macro'
Convert HPA2HVA, HVA2HPA, GPA2HVA and HVA2GPA to inline functions.

v1 -> v2:
 * Modify the following statement.
   rsdp = biosacpi_search_rsdp((char *)hpa2hva((uint64_t)(*addr << 4)),
                                                                0x400);
   Instead of "(uint64_t)(*addr << 4)", "(uint64_t)(*addr) << 4U" would
   be clearer.

Tracked-On: #861
Signed-off-by: Shiqing Gao <shiqing.gao@intel.com>
Reviewed-by: Junjie Mao <junjie.mao@intel.com>
2018-09-07 11:11:06 +08:00

290 lines
6.9 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* Copyright (c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/* Passthrough PCI device related operations */
#include <hypervisor.h>
#include <hv_lib.h>
#include <acrn_common.h>
#include <hv_arch.h>
#include <hv_debug.h>
#include "pci_priv.h"
static spinlock_t pci_device_lock = { .head = 0, .tail = 0 };
static inline uint32_t pci_bar_base(uint32_t bar)
{
return bar & PCIM_BAR_MEM_BASE;
}
static uint32_t pci_pdev_calc_address(union pci_bdf bdf, uint32_t offset)
{
uint32_t addr = (uint32_t)bdf.value;
addr <<= 8U;
addr |= (offset | PCI_CFG_ENABLE);
return addr;
}
static uint32_t pci_pdev_read_cfg(struct pci_pdev *pdev,
uint32_t offset, uint32_t bytes)
{
uint32_t addr;
uint32_t val;
spinlock_obtain(&pci_device_lock);
addr = pci_pdev_calc_address(pdev->bdf, offset);
/* Write address to ADDRESS register */
pio_write(addr, PCI_CONFIG_ADDR, 4U);
/* Read result from DATA register */
switch (bytes) {
case 1U:
val = pio_read8(PCI_CONFIG_DATA + (offset & 3U));
break;
case 2U:
val = pio_read16(PCI_CONFIG_DATA + (offset & 2U));
break;
default:
val = pio_read32(PCI_CONFIG_DATA);
break;
}
spinlock_release(&pci_device_lock);
return val;
}
static void pci_pdev_write_cfg(struct pci_pdev *pdev, uint32_t offset,
uint32_t bytes, uint32_t val)
{
uint32_t addr;
spinlock_obtain(&pci_device_lock);
addr = pci_pdev_calc_address(pdev->bdf, offset);
/* Write address to ADDRESS register */
pio_write(addr, PCI_CONFIG_ADDR, 4U);
/* Write value to DATA register */
switch (bytes) {
case 1U:
pio_write8(val, PCI_CONFIG_DATA + (offset & 3U));
break;
case 2U:
pio_write16(val, PCI_CONFIG_DATA + (offset & 2U));
break;
default:
pio_write32(val, PCI_CONFIG_DATA);
break;
}
spinlock_release(&pci_device_lock);
}
static int vdev_pt_init_validate(struct pci_vdev *vdev)
{
uint32_t idx;
for (idx = 0; idx < (uint32_t)PCI_BAR_COUNT; idx++) {
if ((vdev->bar[idx].base != 0x0UL)
|| ((vdev->bar[idx].size & 0xFFFUL) != 0x0UL)
|| ((vdev->bar[idx].type != PCIBAR_MEM32)
&& (vdev->bar[idx].type != PCIBAR_NONE))) {
return -EINVAL;
}
}
return 0;
}
static int vdev_pt_init(struct pci_vdev *vdev)
{
int ret;
struct vm *vm = vdev->vpci->vm;
uint16_t pci_command;
ret = vdev_pt_init_validate(vdev);
if (ret != 0) {
pr_err("Error, invalid bar defined");
return ret;
}
/* Create an iommu domain for target VM if not created */
if (vm->iommu == NULL) {
if (vm->arch_vm.nworld_eptp == 0UL) {
vm->arch_vm.nworld_eptp = alloc_paging_struct();
}
vm->iommu = create_iommu_domain(vm->vm_id,
hva2hpa(vm->arch_vm.nworld_eptp), 48U);
}
ret = assign_iommu_device(vm->iommu, vdev->pdev.bdf.bits.b,
(uint8_t)(vdev->pdev.bdf.value & 0xFFU));
pci_command = pci_pdev_read_cfg(&vdev->pdev, PCIR_COMMAND, 2U);
/* Disable INTX */
pci_command |= 0x400U;
pci_pdev_write_cfg(&vdev->pdev, PCIR_COMMAND, 2U, pci_command);
return ret;
}
static int vdev_pt_deinit(struct pci_vdev *vdev)
{
int ret;
struct vm *vm = vdev->vpci->vm;
ret = unassign_iommu_device(vm->iommu, vdev->pdev.bdf.bits.b,
(uint8_t)(vdev->pdev.bdf.value & 0xFFU));
return ret;
}
static int vdev_pt_cfgread(struct pci_vdev *vdev, uint32_t offset,
uint32_t bytes, uint32_t *val)
{
/* Assumption: access needed to be aligned on 1/2/4 bytes */
if ((offset & (bytes - 1U)) != 0U) {
*val = 0xFFFFFFFFU;
return -EINVAL;
}
/* PCI BARs is emulated */
if (pci_bar_access(offset)) {
*val = pci_vdev_read_cfg(vdev, offset, bytes);
} else {
*val = pci_pdev_read_cfg(&vdev->pdev, offset, bytes);
}
return 0;
}
static int vdev_pt_remap_bar(struct pci_vdev *vdev, uint32_t idx,
uint32_t new_base)
{
int error = 0;
struct vm *vm = vdev->vpci->vm;
if (vdev->bar[idx].base != 0UL) {
error = ept_mr_del(vm, (uint64_t *)vm->arch_vm.nworld_eptp,
vdev->bar[idx].base,
vdev->bar[idx].size);
if (error != 0) {
return error;
}
}
if (new_base != 0U) {
/* Map the physical BAR in the guest MMIO space */
error = ept_mr_add(vm, (uint64_t *)vm->arch_vm.nworld_eptp,
vdev->pdev.bar[idx].base, /* HPA */
new_base, /*GPA*/
vdev->bar[idx].size,
EPT_WR | EPT_RD | EPT_UNCACHED);
if (error != 0) {
return error;
}
}
return error;
}
static void vdev_pt_cfgwrite_bar(struct pci_vdev *vdev, uint32_t offset,
uint32_t bytes, uint32_t new_bar_uos)
{
uint32_t idx;
uint32_t new_bar, mask;
bool bar_update_normal;
int error;
if ((bytes != 4U) || ((offset & 0x3U) != 0U)) {
return;
}
new_bar = 0U;
idx = (offset - pci_bar_offset(0U)) >> 2U;
mask = ~(vdev->bar[idx].size - 1U);
switch (vdev->bar[idx].type) {
case PCIBAR_NONE:
vdev->bar[idx].base = 0UL;
break;
case PCIBAR_MEM32:
bar_update_normal = (new_bar_uos != (uint32_t)~0U);
new_bar = new_bar_uos & mask;
if (bar_update_normal) {
error = vdev_pt_remap_bar(vdev, idx,
pci_bar_base(new_bar));
if (error != 0) {
pr_err("vdev_pt_remap_bar failed: %d", idx);
}
vdev->bar[idx].base = pci_bar_base(new_bar);
}
break;
default:
pr_err("Unknown bar type, idx=%d", idx);
break;
}
pci_vdev_write_cfg_u32(vdev, offset, new_bar);
}
static int vdev_pt_cfgwrite(struct pci_vdev *vdev, uint32_t offset,
uint32_t bytes, uint32_t val)
{
/* Assumption: access needed to be aligned on 1/2/4 bytes */
if ((offset & (bytes - 1U)) != 0U) {
return -EINVAL;
}
/* PCI BARs are emulated */
if (pci_bar_access(offset)) {
vdev_pt_cfgwrite_bar(vdev, offset, bytes, val);
} else {
/* Write directly to physical device's config space */
pci_pdev_write_cfg(&vdev->pdev, offset, bytes, val);
}
return 0;
}
struct pci_vdev_ops pci_ops_vdev_pt = {
.init = vdev_pt_init,
.deinit = vdev_pt_deinit,
.cfgread = vdev_pt_cfgread,
.cfgwrite = vdev_pt_cfgwrite,
};