acrn-hypervisor/hypervisor/boot/sbl/multiboot.c
Huihuang Shi be0f5e6c16 HV:treewide:fix "expression is not Boolean"
MISRA C explicit required expression should be boolean when
in branch statements (if,while...).

Signed-off-by: Huihuang Shi <huihuang.shi@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
2018-06-20 14:19:47 +08:00

184 lines
5.3 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <multiboot.h>
#include <zeropage.h>
#include <hob_parse.h>
#define BOOT_ARGS_LOAD_ADDR 0x24EFC000
#define ACRN_DBG_BOOT 6
/* There are two sources for vm0 kernel cmdline:
* - cmdline from sbl. mbi->cmdline
* - cmdline from acrn stitching tool. mod[0].mm_string
* We need to merge them together
*/
static char kernel_cmdline[MEM_2K];
/* now modules support: FIRMWARE & RAMDISK & SeedList */
static void parse_other_modules(struct vm *vm,
struct multiboot_module *mods, int mods_count)
{
int i = 0;
for (i = 0; i < mods_count; i++) {
int type_len = 0;
const char *start = (const char *) (uint64_t)mods[i].mm_string;
const char *end;
void *mod_addr = (void *)(uint64_t)mods[i].mm_mod_start;
uint32_t mod_size = mods[i].mm_mod_end - mods[i].mm_mod_start;
dev_dbg(ACRN_DBG_BOOT, "other mod-%d start=0x%x, end=0x%x",
i, mods[i].mm_mod_start, mods[i].mm_mod_end);
dev_dbg(ACRN_DBG_BOOT, "cmd addr=0x%x, str=%s",
mods[i].mm_string, start);
while (*start == ' ')
start++;
end = start;
while (*end != ' ' && (*end) != 0)
end++;
type_len = end - start;
if (strncmp("FIRMWARE", start, type_len) == 0) {
char dyn_bootargs[100] = {0};
void *load_addr = vm->sw.linux_info.bootargs_load_addr;
uint32_t args_size = vm->sw.linux_info.bootargs_size;
static int copy_once = 1;
start = end + 1; /*it is fw name for boot args */
snprintf(dyn_bootargs, 100, " %s=0x%x@0x%x ",
start, mod_size, mod_addr);
dev_dbg(ACRN_DBG_BOOT, "fw-%d: %s", i, dyn_bootargs);
/*copy boot args to load addr, set src=load addr*/
if (copy_once != 0) {
copy_once = 0;
strcpy_s(load_addr, MEM_2K,
vm->sw.linux_info.bootargs_src_addr);
vm->sw.linux_info.bootargs_src_addr = load_addr;
}
strcpy_s(load_addr + args_size,
100, dyn_bootargs);
vm->sw.linux_info.bootargs_size =
strnlen_s(load_addr, MEM_2K);
} else if (strncmp("RAMDISK", start, type_len) == 0) {
vm->sw.linux_info.ramdisk_src_addr = mod_addr;
vm->sw.linux_info.ramdisk_load_addr = mod_addr;
vm->sw.linux_info.ramdisk_size = mod_size;
} else if (strncmp("SeedList", start, type_len) == 0) {
parse_seed_list(mod_addr);
} else {
pr_warn("not support mod, cmd: %s", start);
}
}
}
static void *get_kernel_load_addr(void *kernel_src_addr)
{
struct zero_page *zeropage;
/* According to the explaination for pref_address
* in Documentation/x86/boot.txt, a relocating
* bootloader should attempt to load kernel at pref_address
* if possible. A non-relocatable kernel will unconditionally
* move itself and to run at this address, so no need to copy
* kernel to perf_address by bootloader, if kernel is
* non-relocatable.
*/
zeropage = (struct zero_page *)kernel_src_addr;
if (zeropage->hdr.relocatable_kernel != 0U)
return (void *)zeropage->hdr.pref_addr;
return kernel_src_addr;
}
int init_vm0_boot_info(struct vm *vm)
{
struct multiboot_module *mods = NULL;
struct multiboot_info *mbi = NULL;
if (!is_vm0(vm)) {
pr_err("just for vm0 to get info!");
return -EINVAL;
}
if (boot_regs[0] != MULTIBOOT_INFO_MAGIC) {
ASSERT(false, "no multiboot info found");
return -EINVAL;
}
mbi = (struct multiboot_info *)((uint64_t)boot_regs[1]);
dev_dbg(ACRN_DBG_BOOT, "Multiboot detected, flag=0x%x", mbi->mi_flags);
if ((mbi->mi_flags & MULTIBOOT_INFO_HAS_MODS) == 0U) {
ASSERT(false, "no sos kernel info found");
return -EINVAL;
}
dev_dbg(ACRN_DBG_BOOT, "mod counts=%d\n", mbi->mi_mods_count);
/* mod[0] is for kernel&cmdline, other mod for ramdisk/firmware info*/
mods = (struct multiboot_module *)(uint64_t)mbi->mi_mods_addr;
dev_dbg(ACRN_DBG_BOOT, "mod0 start=0x%x, end=0x%x",
mods[0].mm_mod_start, mods[0].mm_mod_end);
dev_dbg(ACRN_DBG_BOOT, "cmd addr=0x%x, str=%s", mods[0].mm_string,
(char *) (uint64_t)mods[0].mm_string);
vm->sw.kernel_type = VM_LINUX_GUEST;
vm->sw.kernel_info.kernel_src_addr =
(void *)(uint64_t)mods[0].mm_mod_start;
vm->sw.kernel_info.kernel_size =
mods[0].mm_mod_end - mods[0].mm_mod_start;
vm->sw.kernel_info.kernel_load_addr =
get_kernel_load_addr(vm->sw.kernel_info.kernel_src_addr);
/*
* If there is cmdline from mbi->mi_cmdline, merge it with
* mods[0].mm_string
*/
if ((mbi->mi_flags & MULTIBOOT_INFO_HAS_CMDLINE) != 0U) {
char *cmd_src, *cmd_dst;
int off = 0;
cmd_dst = kernel_cmdline;
cmd_src = HPA2HVA((uint64_t)mbi->mi_cmdline);
strncpy_s(cmd_dst, MEM_2K, cmd_src, strnlen_s(cmd_src, MEM_2K));
off = strnlen_s(cmd_dst, MEM_2K);
cmd_dst[off] = ' '; /* insert space */
off += 1;
cmd_dst += off;
cmd_src = HPA2HVA((uint64_t)mods[0].mm_string);
strncpy_s(cmd_dst, MEM_2K - off, cmd_src,
strnlen_s(cmd_src, MEM_2K - off));
vm->sw.linux_info.bootargs_src_addr = kernel_cmdline;
vm->sw.linux_info.bootargs_size =
strnlen_s(kernel_cmdline, MEM_2K);
} else {
vm->sw.linux_info.bootargs_src_addr =
(void *)(uint64_t)mods[0].mm_string;
vm->sw.linux_info.bootargs_size =
strnlen_s((char *)(uint64_t) mods[0].mm_string, MEM_2K);
}
vm->sw.linux_info.bootargs_load_addr = (void *)BOOT_ARGS_LOAD_ADDR;
if (mbi->mi_mods_count > 1) {
/*parse other modules, like firmware /ramdisk */
parse_other_modules(vm, mods + 1, mbi->mi_mods_count - 1);
}
return 0;
}