acrn-hypervisor/hypervisor/dm/vpci/pci_pt.c
Shiqing Gao 42aaf5d46f hv: code clean up regarding to % and / operations
- Clean up some code regarding to % and / operations since bit
  operations are faster.
        x % 64U ---> x & 0x3fU
        x % 32U ---> x & 0x1fU
        x % 16U ---> x & 0xfU
        x % 8U  ---> x & 0x7U
        x % 4U  ---> x & 0x3U
        x % 2U  ---> x & 0x1U

        x / 64U ---> x >> 6U
        x / 32U ---> x >> 5U
        x / 16U ---> x >> 4U
        x / 8U  ---> x >> 3U
        x / 4U  ---> x >> 2U
        x / 2U  ---> x >> 1U
- Minor changes regarding to coding styles

Tracked-On: #861
Signed-off-by: Shiqing Gao <shiqing.gao@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
2018-08-22 15:37:53 +08:00

293 lines
6.9 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* Copyright (c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/* Passthrough PCI device related operations */
#include <hypervisor.h>
#include <hv_lib.h>
#include <acrn_common.h>
#include <hv_arch.h>
#include <hv_debug.h>
#include "pci_priv.h"
static spinlock_t pci_device_lock = { .head = 0, .tail = 0 };
static uint32_t pci_pdev_calc_address(uint16_t bdf, uint32_t offset)
{
uint32_t addr = bdf;
addr <<= 8;
addr |= (offset | PCI_CFG_ENABLE);
return addr;
}
static uint32_t pci_pdev_read_cfg(struct pci_pdev *pdev,
uint32_t offset, uint32_t bytes)
{
uint32_t addr;
uint32_t val;
spinlock_obtain(&pci_device_lock);
addr = pci_pdev_calc_address(pdev->bdf, offset);
/* Write address to ADDRESS register */
pio_write(addr, PCI_CONFIG_ADDR, 4);
/* Read result from DATA register */
switch (bytes) {
case 1U:
val = pio_read8(PCI_CONFIG_DATA + (offset & 3U));
break;
case 2U:
val = pio_read16(PCI_CONFIG_DATA + (offset & 2U));
break;
default:
val = pio_read32(PCI_CONFIG_DATA);
break;
}
spinlock_release(&pci_device_lock);
return val;
}
static void pci_pdev_write_cfg(struct pci_pdev *pdev, uint32_t offset,
uint32_t bytes, uint32_t val)
{
uint32_t addr;
spinlock_obtain(&pci_device_lock);
addr = pci_pdev_calc_address(pdev->bdf, offset);
/* Write address to ADDRESS register */
pio_write(addr, PCI_CONFIG_ADDR, 4);
/* Write value to DATA register */
switch (bytes) {
case 1U:
pio_write8(val, PCI_CONFIG_DATA + (offset & 3U));
break;
case 2U:
pio_write16(val, PCI_CONFIG_DATA + (offset & 2U));
break;
default:
pio_write32(val, PCI_CONFIG_DATA);
break;
}
spinlock_release(&pci_device_lock);
}
static int vdev_pt_init_validate(struct pci_vdev *vdev)
{
uint32_t idx;
for (idx = 0; idx < (uint32_t)PCI_BAR_COUNT; idx++) {
if (vdev->bar[idx].type != PCIM_BAR_MEM_32) {
return -EINVAL;
}
}
return 0;
}
static void vdev_pt_init_bar_registers(struct pci_vdev *vdev)
{
uint32_t idx;
for (idx = 0; idx < (uint32_t)PCI_BAR_COUNT; idx++) {
/* Initialize the BAR register in config space */
pci_vdev_write_cfg_u32(vdev, PCIR_BAR(idx),
PCI_BAR(vdev->bar[idx].base, vdev->bar[idx].type));
}
}
static int vdev_pt_init(struct pci_vdev *vdev)
{
int ret;
struct vm *vm = vdev->vpci->vm;
ret = vdev_pt_init_validate(vdev);
if (ret != 0) {
pr_err("virtual bar can only be of type PCIM_BAR_MEM_32!");
return ret;
}
/* Create an iommu domain for target VM if not created */
if (vm->iommu == NULL) {
if (vm->arch_vm.nworld_eptp == 0UL) {
vm->arch_vm.nworld_eptp = alloc_paging_struct();
}
vm->iommu = create_iommu_domain(vm->vm_id,
HVA2HPA(vm->arch_vm.nworld_eptp), 48U);
}
ret = assign_iommu_device(vm->iommu,
PCI_BUS(vdev->pdev.bdf), LOBYTE(vdev->pdev.bdf));
vdev_pt_init_bar_registers(vdev);
return ret;
}
static int vdev_pt_deinit(struct pci_vdev *vdev)
{
int ret;
struct vm *vm = vdev->vpci->vm;
ret = unassign_iommu_device(vm->iommu, PCI_BUS(vdev->pdev.bdf),
LOBYTE(vdev->pdev.bdf));
return ret;
}
static int bar_access(uint32_t coff)
{
if ((coff >= PCIR_BAR(0U)) && (coff < PCIR_BAR(PCI_BAR_COUNT))) {
return 1;
} else {
return 0;
}
}
static int vdev_pt_cfgread(struct pci_vdev *vdev, uint32_t offset,
uint32_t bytes, uint32_t *val)
{
/* Assumption: access needed to be aligned on 1/2/4 bytes */
if ((offset & (bytes - 1)) != 0U) {
*val = 0xffffffffU;
return -EINVAL;
}
/* PCI BARs is emulated */
if (bar_access(offset)) {
*val = pci_vdev_read_cfg(vdev, offset, bytes);
} else {
*val = pci_pdev_read_cfg(&vdev->pdev, offset, bytes);
}
return 0;
}
static int vdev_pt_remap_bar(struct pci_vdev *vdev, uint32_t idx,
uint32_t new_base)
{
int error = 0;
struct vm *vm = vdev->vpci->vm;
if (vdev->bar[idx].base != 0) {
error = ept_mr_del(vm, (uint64_t *)vm->arch_vm.nworld_eptp,
vdev->bar[idx].base,
vdev->bar[idx].size);
if (error) {
return error;
}
}
if (new_base != 0U) {
/* Map the physical BAR in the guest MMIO space */
error = ept_mr_add(vm,
vdev->pdev.bar[idx].base, /* HPA */
new_base, /*GPA*/
vdev->bar[idx].size,
EPT_WR | EPT_RD | EPT_UNCACHED);
if (error) {
return error;
}
}
return error;
}
static uint32_t memen(struct pci_vdev *vdev)
{
return pci_pdev_read_cfg(&vdev->pdev, PCIR_COMMAND, 2)
& PCIM_CMD_MEMEN;
}
static void vdev_pt_cfgwrite_bar(struct pci_vdev *vdev, uint32_t offset,
uint32_t bytes, uint32_t new_bar_uos)
{
uint32_t idx;
uint32_t new_bar, mask;
bool bar_update_normal = 1;
bool do_map;
int error;
idx = (offset - PCIR_BAR(0U)) >> 2U;
mask = ~(vdev->bar[idx].size - 1U);
bar_update_normal = (new_bar_uos != (uint32_t)~0U);
new_bar = new_bar_uos & mask;
new_bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
if (PCI_BAR_BASE(new_bar) == vdev->bar[idx].base) {
return;
}
do_map = (memen(vdev)) && bar_update_normal;
if (do_map) {
error = vdev_pt_remap_bar(vdev, idx, PCI_BAR_BASE(new_bar));
if (error) {
pr_err("vdev_pt_remap_bar failed: %d", idx);
}
}
pci_vdev_write_cfg_u32(vdev, offset, new_bar);
vdev->bar[idx].base = PCI_BAR_BASE(new_bar);
}
static int vdev_pt_cfgwrite(struct pci_vdev *vdev, uint32_t offset,
uint32_t bytes, uint32_t val)
{
/* Assumption: access needed to be aligned on 1/2/4 bytes */
if ((offset & (bytes - 1)) != 0U) {
return -EINVAL;
}
/* PCI BARs are emulated */
if (bar_access(offset)) {
vdev_pt_cfgwrite_bar(vdev, offset, bytes, val);
} else {
/* Write directly to physical device's config space */
pci_pdev_write_cfg(&vdev->pdev, offset, bytes, val);
}
return 0;
}
struct pci_vdev_ops pci_ops_vdev_pt = {
.init = vdev_pt_init,
.deinit = vdev_pt_deinit,
.cfgwrite = vdev_pt_cfgwrite,
.cfgread = vdev_pt_cfgread,
};