acrn-hypervisor/hypervisor/boot/sbl/multiboot.c
Junjun Shan 5c92329606 hv:clear up the usage of printf data struct
The printf related functions have been called by other various
functions, e.g. get_ptdev_info(), get_ioapic_info, etc. The patch
is used to clear up the usage.

Tracked-On: #861
Signed-off-by: Junjun Shan <junjun.shan@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
2018-09-28 16:40:07 +08:00

341 lines
9.5 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <multiboot.h>
#include <zeropage.h>
#include <hob_parse.h>
#define BOOT_ARGS_LOAD_ADDR 0x24EFC000
#define ACRN_DBG_BOOT 6U
#define MAX_BOOT_PARAMS_LEN 64U
static const char *boot_params_arg = "ImageBootParamsAddr=";
struct image_boot_params {
uint32_t size_of_this_struct;
uint32_t version;
uint64_t p_seed_list;
uint64_t p_platform_info;
uint64_t reserved;
};
/* There are two sources for vm0 kernel cmdline:
* - cmdline from sbl. mbi->cmdline
* - cmdline from acrn stitching tool. mod[0].mm_string
* We need to merge them together
*/
static char kernel_cmdline[MEM_2K];
/* now modules support: FIRMWARE & RAMDISK & SeedList */
static void parse_other_modules(struct vm *vm,
struct multiboot_module *mods, uint32_t mods_count)
{
uint32_t i;
for (i = 0U; i < mods_count; i++) {
uint32_t type_len;
const char *start = hpa2hva((uint64_t)mods[i].mm_string);
const char *end;
void *mod_addr = hpa2hva((uint64_t)mods[i].mm_mod_start);
uint32_t mod_size = mods[i].mm_mod_end - mods[i].mm_mod_start;
dev_dbg(ACRN_DBG_BOOT, "other mod-%d start=0x%x, end=0x%x",
i, mods[i].mm_mod_start, mods[i].mm_mod_end);
dev_dbg(ACRN_DBG_BOOT, "cmd addr=0x%x, str=%s",
mods[i].mm_string, start);
while (*start == ' ') {
start++;
}
end = start;
while (((*end) != ' ') && ((*end) != '\0')) {
end++;
}
type_len = end - start;
if (strncmp("FIRMWARE", start, type_len) == 0) {
char dyn_bootargs[100] = {'\0'};
void *load_addr = gpa2hva(vm,
(uint64_t)vm->sw.linux_info.bootargs_load_addr);
uint32_t args_size = vm->sw.linux_info.bootargs_size;
static int copy_once = 1;
start = end + 1; /*it is fw name for boot args */
snprintf(dyn_bootargs, 100U, " %s=0x%x@0x%x ",
start, mod_size, mod_addr);
dev_dbg(ACRN_DBG_BOOT, "fw-%d: %s", i, dyn_bootargs);
/*copy boot args to load addr, set src=load addr*/
if (copy_once != 0) {
copy_once = 0;
(void)strcpy_s(load_addr, MEM_2K, (const
char *)vm->sw.linux_info.bootargs_src_addr);
vm->sw.linux_info.bootargs_src_addr = load_addr;
}
(void)strcpy_s(load_addr + args_size,
100U, dyn_bootargs);
vm->sw.linux_info.bootargs_size =
strnlen_s(load_addr, MEM_2K);
} else if (strncmp("RAMDISK", start, type_len) == 0) {
vm->sw.linux_info.ramdisk_src_addr = mod_addr;
vm->sw.linux_info.ramdisk_load_addr =
(void *)(uint64_t)mods[i].mm_mod_start;
vm->sw.linux_info.ramdisk_size = mod_size;
} else {
pr_warn("not support mod, cmd: %s", start);
}
}
}
static void *get_kernel_load_addr(void *kernel_src_addr)
{
struct zero_page *zeropage;
/* According to the explaination for pref_address
* in Documentation/x86/boot.txt, a relocating
* bootloader should attempt to load kernel at pref_address
* if possible. A non-relocatable kernel will unconditionally
* move itself and to run at this address, so no need to copy
* kernel to perf_address by bootloader, if kernel is
* non-relocatable.
*/
zeropage = (struct zero_page *)kernel_src_addr;
if (zeropage->hdr.relocatable_kernel != 0U) {
return (void *)zeropage->hdr.pref_addr;
}
return kernel_src_addr;
}
/*
* parse_image_boot_params
*
* description:
* This function parse image_boot_params from cmdline. Mainly on
* 1. parse structure address from cmdline
* 2. get seed_list address and call function to parse seed
* 3. convert address in the structure from HPA to SOS's GPA
* 4. clear original image_boot_params argument in cmdline since
* original address is HPA, need to convert and append later
* when compose kernel command line.
*
* input:
* vm pointer to vm structure
* cmdline pointer to cmdline string
*
* return value:
* boot_params HVA of image_boot_params if parse success, or
* else a NULL pointer.
*/
static void *parse_image_boot_params(struct vm *vm, char *cmdline)
{
char *arg, *arg_end;
char *param;
uint32_t len;
struct image_boot_params *boot_params;
if (cmdline == NULL) {
goto fail;
}
len = strnlen_s(boot_params_arg, MAX_BOOT_PARAMS_LEN);
arg = strstr_s(cmdline, MEM_2K, boot_params_arg, len);
if (arg == NULL) {
goto fail;
}
param = arg + len;
boot_params = (struct image_boot_params *)hpa2hva(strtoul_hex(param));
if (boot_params == NULL) {
goto fail;
}
parse_seed_list((struct seed_list_hob *)hpa2hva(
boot_params->p_seed_list));
/*
* Convert the addresses to SOS GPA since this structure will be used
* in SOS.
*/
boot_params->p_seed_list = hpa2gpa(vm, boot_params->p_seed_list);
boot_params->p_platform_info =
hpa2gpa(vm, boot_params->p_platform_info);
/*
* Replace original arguments with spaces since SOS's GPA is not
* identity mapped to HPA. The argument will be appended later when
* compose cmdline for SOS.
*/
arg_end = strchr(arg, ' ');
len = (arg_end != NULL) ? (uint32_t)(arg_end - arg) :
strnlen_s(arg, MEM_2K);
(void)memset(arg, ' ', len);
return (void *)boot_params;
fail:
parse_seed_list(NULL);
return NULL;
}
#ifdef CONFIG_PARTITION_MODE
int init_vm_boot_info(struct vm *vm)
{
struct multiboot_module *mods = NULL;
struct multiboot_info *mbi = NULL;
if (boot_regs[0] != MULTIBOOT_INFO_MAGIC) {
ASSERT(false, "no multiboot info found");
return -EINVAL;
}
mbi = hpa2hva((uint64_t)boot_regs[1]);
dev_dbg(ACRN_DBG_BOOT, "Multiboot detected, flag=0x%x", mbi->mi_flags);
if ((mbi->mi_flags & MULTIBOOT_INFO_HAS_MODS) == 0U) {
ASSERT(false, "no kernel info found");
return -EINVAL;
}
dev_dbg(ACRN_DBG_BOOT, "mod counts=%d\n", mbi->mi_mods_count);
/* mod[0] is for kernel&cmdline, other mod for ramdisk/firmware info*/
mods = (struct multiboot_module *)(uint64_t)mbi->mi_mods_addr;
dev_dbg(ACRN_DBG_BOOT, "mod0 start=0x%x, end=0x%x",
mods[0].mm_mod_start, mods[0].mm_mod_end);
dev_dbg(ACRN_DBG_BOOT, "cmd addr=0x%x, str=%s", mods[0].mm_string,
(char *) (uint64_t)mods[0].mm_string);
vm->sw.kernel_type = VM_LINUX_GUEST;
vm->sw.kernel_info.kernel_src_addr =
hpa2hva((uint64_t)mods[0].mm_mod_start);
vm->sw.kernel_info.kernel_size =
mods[0].mm_mod_end - mods[0].mm_mod_start;
vm->sw.kernel_info.kernel_load_addr = (void *)(16 * 1024 * 1024UL);
vm->sw.linux_info.bootargs_src_addr =
vm->vm_desc->bootargs;
vm->sw.linux_info.bootargs_size =
strnlen_s(vm->vm_desc->bootargs, MEM_2K);
vm->sw.linux_info.bootargs_load_addr = (void *)(vm->vm_desc->mem_size - 8*1024UL);
return 0;
}
#else
/**
* @param[inout] vm pointer to a vm descriptor
*
* @return 0 - on success
* @return -EINVAL - on invalid parameters
*
* @pre vm != NULL
* @pre is_vm0(vm) == true
*/
int init_vm_boot_info(struct vm *vm)
{
struct multiboot_module *mods = NULL;
struct multiboot_info *mbi = NULL;
if (boot_regs[0] != MULTIBOOT_INFO_MAGIC) {
ASSERT(false, "no multiboot info found");
return -EINVAL;
}
mbi = hpa2hva((uint64_t)boot_regs[1]);
dev_dbg(ACRN_DBG_BOOT, "Multiboot detected, flag=0x%x", mbi->mi_flags);
if ((mbi->mi_flags & MULTIBOOT_INFO_HAS_MODS) == 0U) {
ASSERT(false, "no sos kernel info found");
return -EINVAL;
}
dev_dbg(ACRN_DBG_BOOT, "mod counts=%d\n", mbi->mi_mods_count);
/* mod[0] is for kernel&cmdline, other mod for ramdisk/firmware info*/
mods = (struct multiboot_module *)hpa2hva((uint64_t)mbi->mi_mods_addr);
dev_dbg(ACRN_DBG_BOOT, "mod0 start=0x%x, end=0x%x",
mods[0].mm_mod_start, mods[0].mm_mod_end);
dev_dbg(ACRN_DBG_BOOT, "cmd addr=0x%x, str=%s", mods[0].mm_string,
(char *) (uint64_t)mods[0].mm_string);
vm->sw.kernel_type = VM_LINUX_GUEST;
vm->sw.kernel_info.kernel_src_addr =
hpa2hva((uint64_t)mods[0].mm_mod_start);
vm->sw.kernel_info.kernel_size =
mods[0].mm_mod_end - mods[0].mm_mod_start;
vm->sw.kernel_info.kernel_load_addr = (void *)hva2gpa(vm,
get_kernel_load_addr(vm->sw.kernel_info.kernel_src_addr));
/*
* If there is cmdline from mbi->mi_cmdline, merge it with
* mods[0].mm_string
*/
if ((mbi->mi_flags & MULTIBOOT_INFO_HAS_CMDLINE) != 0U) {
char *cmd_src, *cmd_dst;
uint32_t off = 0U;
void *boot_params_addr;
char buf[MAX_BOOT_PARAMS_LEN];
cmd_dst = kernel_cmdline;
cmd_src = hpa2hva((uint64_t)mbi->mi_cmdline);
boot_params_addr = parse_image_boot_params(vm, cmd_src);
/*
* Convert ImageBootParamsAddr to SOS GPA and append to
* kernel cmdline
*/
if (boot_params_addr != NULL) {
(void)memset(buf, 0U, sizeof(buf));
snprintf(buf, MAX_BOOT_PARAMS_LEN, "%s0x%X ",
boot_params_arg, hva2gpa(vm, boot_params_addr));
(void)strncpy_s(cmd_dst, MEM_2K, buf,
MAX_BOOT_PARAMS_LEN);
off = strnlen_s(cmd_dst, MEM_2K);
}
cmd_dst += off;
(void)strncpy_s(cmd_dst, MEM_2K - off, cmd_src,
strnlen_s(cmd_src, MEM_2K - off));
off = strnlen_s(cmd_dst, MEM_2K - off);
cmd_dst[off] = ' '; /* insert space */
off += 1U;
cmd_dst += off;
cmd_src = hpa2hva((uint64_t)mods[0].mm_string);
(void)strncpy_s(cmd_dst, MEM_2K - off, cmd_src,
strnlen_s(cmd_src, MEM_2K - off));
vm->sw.linux_info.bootargs_src_addr = kernel_cmdline;
vm->sw.linux_info.bootargs_size =
strnlen_s(kernel_cmdline, MEM_2K);
} else {
vm->sw.linux_info.bootargs_src_addr =
hpa2hva((uint64_t)mods[0].mm_string);
vm->sw.linux_info.bootargs_size =
strnlen_s(hpa2hva((uint64_t)mods[0].mm_string),
MEM_2K);
}
vm->sw.linux_info.bootargs_load_addr = (void *)BOOT_ARGS_LOAD_ADDR;
if (mbi->mi_mods_count > 1U) {
/*parse other modules, like firmware /ramdisk */
parse_other_modules(vm, mods + 1, mbi->mi_mods_count - 1);
}
return 0;
}
#endif