acrn-hypervisor/hypervisor/lib/crypto/mbedtls/sha256.c
Ziheng Li eb8bcb06b3 Update copyright year range in code headers
Modified the copyright year range in code, and corrected "int32_tel"
into "Intel" in two "hypervisor/include/debug/profiling.h" and
"hypervisor/include/debug/profiling_internal.h".

Tracked-On: #7559
Signed-off-by: Ziheng Li <ziheng.li@intel.com>
2022-07-15 11:48:35 +08:00

392 lines
11 KiB
C

/*
* FIPS-180-2 compliant SHA-256 implementation
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Copyright (C) 2018-2022, Intel Corporation.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/*
* The SHA-256 Secure Hash Standard was published by NIST in 2002.
*
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
*/
#include "md.h"
#include "sha256.h"
static const uint32_t k[] =
{
0x428A2F98U, 0x71374491U, 0xB5C0FBCFU, 0xE9B5DBA5U,
0x3956C25BU, 0x59F111F1U, 0x923F82A4U, 0xAB1C5ED5U,
0xD807AA98U, 0x12835B01U, 0x243185BEU, 0x550C7DC3U,
0x72BE5D74U, 0x80DEB1FEU, 0x9BDC06A7U, 0xC19BF174U,
0xE49B69C1U, 0xEFBE4786U, 0x0FC19DC6U, 0x240CA1CCU,
0x2DE92C6FU, 0x4A7484AAU, 0x5CB0A9DCU, 0x76F988DAU,
0x983E5152U, 0xA831C66DU, 0xB00327C8U, 0xBF597FC7U,
0xC6E00BF3U, 0xD5A79147U, 0x06CA6351U, 0x14292967U,
0x27B70A85U, 0x2E1B2138U, 0x4D2C6DFCU, 0x53380D13U,
0x650A7354U, 0x766A0ABBU, 0x81C2C92EU, 0x92722C85U,
0xA2BFE8A1U, 0xA81A664BU, 0xC24B8B70U, 0xC76C51A3U,
0xD192E819U, 0xD6990624U, 0xF40E3585U, 0x106AA070U,
0x19A4C116U, 0x1E376C08U, 0x2748774CU, 0x34B0BCB5U,
0x391C0CB3U, 0x4ED8AA4AU, 0x5B9CCA4FU, 0x682E6FF3U,
0x748F82EEU, 0x78A5636FU, 0x84C87814U, 0x8CC70208U,
0x90BEFFFAU, 0xA4506CEBU, 0xBEF9A3F7U, 0xC67178F2U,
};
/**
* @brief get unsinged int value for big endian.
*
* @param[in] b pointer to data which is NON-NULL
*/
static inline uint32_t get_uint32_be(const uint8_t *b, uint32_t i)
{
uint32_t n;
n = ((uint32_t) (*(b + i)) << 24)
| ((uint32_t) (*(b + i + 1U)) << 16)
| ((uint32_t) (*(b + i + 2U)) << 8)
| ((uint32_t) (*(b + i + 3U)));
return n;
}
/**
* @brief put unsinged int value for big endian.
* @param[inout] b pointer to data which is NON-NULL
*/
static inline void put_unint32_be(uint32_t n, uint8_t *b, uint32_t i)
{
*(b + i) = (uint8_t) (n >> 24);
*(b + i + 1U) = (uint8_t) (n >> 16);
*(b + i + 2U) = (uint8_t) (n >> 8);
*(b + i + 3U) = (uint8_t) n;
}
static inline uint32_t shr(uint32_t x, uint8_t n)
{
return ((x & 0xFFFFFFFFU) >> n);
}
static inline uint32_t rotr(uint32_t x, uint8_t n)
{
return (shr(x, n) | (x << (32U - n)));
}
static inline uint32_t sigma0(uint32_t x)
{
return (rotr(x, 7U) ^ rotr(x, 18U) ^ shr(x, 3U));
}
static inline uint32_t sigma1(uint32_t x)
{
return (rotr(x, 17U) ^ rotr(x, 19U) ^ shr(x, 10U));
}
static inline uint32_t sigma2(uint32_t x)
{
return (rotr(x, 2U) ^ rotr(x, 13U) ^ rotr(x, 22U));
}
static inline uint32_t sigma3(uint32_t x)
{
return (rotr(x, 6U) ^ rotr(x, 11U) ^ rotr(x, 25U));
}
static inline uint32_t majority(uint32_t x, uint32_t y, uint32_t z)
{
return ((x & y) | (z & (x | y)));
}
static inline uint32_t choice_alg(uint32_t x, uint32_t y, uint32_t z)
{
return (z ^ (x & (y ^ z)));
}
static inline void decomposition(uint32_t *w, uint32_t i)
{
*(w + i) = sigma1(*(w + i - (2U))) + *(w + i - (7U)) + sigma0(*(w + i - (15U))) + *(w + i - (16U));
}
/**
* @brief Part of compress.
*
* @param[inout] d and h are NON-null pointer
*/
static inline void hash_computation( uint32_t a, uint32_t b, uint32_t c,
uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t x, uint32_t j)
{
uint32_t temp1, temp2;
temp1 = *h + sigma3(e) + choice_alg(e, f, g) + j + x;
temp2 = sigma2(a) + majority(a, b, c);
*d += temp1;
*h = temp1 + temp2;
}
void mbedtls_sha256_init(mbedtls_sha256_context *ctx)
{
(void)memset(ctx, 0U, sizeof(mbedtls_sha256_context));
}
void mbedtls_sha256_free(mbedtls_sha256_context *ctx)
{
if (ctx != NULL) {
(void)mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha256_context));
}
}
void mbedtls_sha256_clone(mbedtls_sha256_context *dst, const mbedtls_sha256_context *src)
{
*dst = *src;
}
/*
* SHA-256 context setup
*/
int32_t mbedtls_sha256_starts_ret(mbedtls_sha256_context *ctx, int32_t is224)
{
ctx->total[0] = 0U;
ctx->total[1] = 0U;
if (is224 == 0) {
/* SHA-256 */
ctx->state[0] = 0x6A09E667U;
ctx->state[1] = 0xBB67AE85U;
ctx->state[2] = 0x3C6EF372U;
ctx->state[3] = 0xA54FF53AU;
ctx->state[4] = 0x510E527FU;
ctx->state[5] = 0x9B05688CU;
ctx->state[6] = 0x1F83D9ABU;
ctx->state[7] = 0x5BE0CD19U;
} else {
/* SHA-224 */
ctx->state[0] = 0xC1059ED8U;
ctx->state[1] = 0x367CD507U;
ctx->state[2] = 0x3070DD17U;
ctx->state[3] = 0xF70E5939U;
ctx->state[4] = 0xFFC00B31U;
ctx->state[5] = 0x68581511U;
ctx->state[6] = 0x64F98FA7U;
ctx->state[7] = 0xBEFA4FA4U;
}
ctx->is224 = is224;
return 0;
}
int32_t mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx, const uint8_t data[64])
{
uint32_t w[64];
uint32_t a[8];
uint32_t i;
for (i = 0U; i < 8U; i++) {
a[i] = ctx->state[i];
}
for (i = 0U; i < 16U; i++) {
w[i] = get_uint32_be(data, 4 * i);
}
for (i = 0U; i < 16U; i += 8U) {
hash_computation(a[0], a[1], a[2], &a[3], a[4], a[5], a[6], &a[7], w[i + 0U], k[i + 0U]);
hash_computation(a[7], a[0], a[1], &a[2], a[3], a[4], a[5], &a[6], w[i + 1U], k[i + 1U]);
hash_computation(a[6], a[7], a[0], &a[1], a[2], a[3], a[4], &a[5], w[i + 2U], k[i + 2U]);
hash_computation(a[5], a[6], a[7], &a[0], a[1], a[2], a[3], &a[4], w[i + 3U], k[i + 3U]);
hash_computation(a[4], a[5], a[6], &a[7], a[0], a[1], a[2], &a[3], w[i + 4U], k[i + 4U]);
hash_computation(a[3], a[4], a[5], &a[6], a[7], a[0], a[1], &a[2], w[i + 5U], k[i + 5U]);
hash_computation(a[2], a[3], a[4], &a[5], a[6], a[7], a[0], &a[1], w[i + 6U], k[i + 6U]);
hash_computation(a[1], a[2], a[3], &a[4], a[5], a[6], a[7], &a[0], w[i + 7U], k[i + 7U]);
}
for (i = 16U; i < 64U; i += 8U) {
decomposition(w, (i + 0U));
hash_computation(a[0], a[1], a[2], &a[3], a[4], a[5], a[6], &a[7], w[i + 0U], k[i + 0U]);
decomposition(w, (i + 1U));
hash_computation(a[7], a[0], a[1], &a[2], a[3], a[4], a[5], &a[6], w[i + 1U], k[i + 1U]);
decomposition(w, (i + 2U));
hash_computation(a[6], a[7], a[0], &a[1], a[2], a[3], a[4], &a[5], w[i + 2U], k[i + 2U]);
decomposition(w, (i + 3U));
hash_computation(a[5], a[6], a[7], &a[0], a[1], a[2], a[3], &a[4], w[i + 3U], k[i + 3U]);
decomposition(w, (i + 4U));
hash_computation(a[4], a[5], a[6], &a[7], a[0], a[1], a[2], &a[3], w[i + 4U], k[i + 4U]);
decomposition(w, (i + 5U));
hash_computation(a[3], a[4], a[5], &a[6], a[7], a[0], a[1], &a[2], w[i + 5U], k[i + 5U]);
decomposition(w, (i + 6U));
hash_computation(a[2], a[3], a[4], &a[5], a[6], a[7], a[0], &a[1], w[i + 6U], k[i + 6U]);
decomposition(w, (i + 7U));
hash_computation(a[1], a[2], a[3], &a[4], a[5], a[6], a[7], &a[0], w[i + 7U], k[i + 7U]);
}
for (i = 0U; i < 8U; i++) {
ctx->state[i] += a[i];
}
return 0;
}
/*
* SHA-256 process buffer
*/
int32_t mbedtls_sha256_update_ret(mbedtls_sha256_context *ctx, const uint8_t *input, size_t ilen)
{
int32_t ret = 0;
size_t fill;
uint32_t left;
const uint8_t *data = input;
size_t len = ilen;
if ((len != 0U) && (data != NULL)) {
left = ctx->total[0] & 0x3FU;
fill = 64U - left;
ctx->total[0] += (uint32_t)len;
ctx->total[0] &= 0xFFFFFFFFU;
if (ctx->total[0] < (uint32_t)len) {
ctx->total[1]++;
}
if ((left != 0U) && (len >= fill)) {
(void)memcpy_s((void *)&ctx->buffer[left], fill, data, fill);
ret = mbedtls_internal_sha256_process(ctx, ctx->buffer);
if (ret == 0) {
data += fill;
len -= fill;
left = 0U;
}
}
if (ret == 0) {
while (len >= 64U) {
ret = mbedtls_internal_sha256_process(ctx, data);
if (ret == 0) {
data += 64;
len -= 64U;
break;
}
}
if (ret == 0) {
if (len > 0U) {
(void)memcpy_s((void *)&ctx->buffer[left], len, data, len);
}
}
}
}
return ret;
}
/*
* SHA-256 final digest
*/
int32_t mbedtls_sha256_finish_ret(mbedtls_sha256_context *ctx, uint8_t output[32])
{
int32_t ret = 0;
uint32_t used;
uint32_t high, low;
/*
* Add padding: 0x80 then 0x00 until 8 bytes remain for the length
*/
used = ctx->total[0] & 0x3FU;
ctx->buffer[used] = 0x80U;
used++;
if (used <= 56U) {
/* Enough room for padding + length in current block */
(void)memset((void *)&ctx->buffer[used], 0U, 56U - used);
} else {
/* We'll need an extra block */
(void)memset((void *)&ctx->buffer[used], 0U, 64U - used);
ret = mbedtls_internal_sha256_process(ctx, ctx->buffer);
if (ret == 0) {
(void)memset(ctx->buffer, 0U, 56U);
}
}
/*
* Add message length
*/
if (ret == 0) {
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
put_unint32_be(high, ctx->buffer, 56);
put_unint32_be(low, ctx->buffer, 60);
ret = mbedtls_internal_sha256_process(ctx, ctx->buffer);
if (ret == 0) {
/*
* Output final state
*/
put_unint32_be(ctx->state[0], output, 0);
put_unint32_be(ctx->state[1], output, 4);
put_unint32_be(ctx->state[2], output, 8);
put_unint32_be(ctx->state[3], output, 12);
put_unint32_be(ctx->state[4], output, 16);
put_unint32_be(ctx->state[5], output, 20);
put_unint32_be(ctx->state[6], output, 24);
if (ctx->is224 == 0) {
put_unint32_be(ctx->state[7], output, 28);
}
}
}
return ret;
}
/*
* output = SHA-256(input buffer)
*/
int32_t mbedtls_sha256_ret(const uint8_t *input, size_t ilen, uint8_t output[32], int32_t is224)
{
int32_t ret = 0;
mbedtls_sha256_context ctx;
mbedtls_sha256_init(&ctx);
ret = mbedtls_sha256_starts_ret(&ctx, is224);
if (ret == 0) {
ret = mbedtls_sha256_update_ret(&ctx, input, ilen);
}
if (ret == 0) {
ret = mbedtls_sha256_finish_ret(&ctx, output);
}
mbedtls_sha256_free(&ctx);
return ret;
}