acrn-hypervisor/hypervisor/common/schedule.c
Kaige Fu 72f7f69c47 HV: Use NMI to kick lapic-pt vCPU's thread
ACRN hypervisor needs to kick vCPU off VMX non-root mode to do some
operations in hypervisor, such as interrupt/exception injection, EPT
flush etc. For non lapic-pt vCPUs, we can use IPI to do so. But, it
doesn't work for lapic-pt vCPUs as the IPI will be injected to VMs
directly without vmexit.

Without the way to kick the vCPU off VMX non-root mode to handle pending
request on time, there may be fatal errors triggered.
1). Certain operation may not be carried out on time which may further
    lead to fatal errors. Taking the EPT flush request as an example, once we
    don't flush the EPT on time and the guest access the out-of-date EPT,
    fatal error happens.
2). ACRN now will send an IPI with vector 0xF0 to target vCPU to kick the vCPU
    off VMX non-root mode if it wants to do some operations on target vCPU.
    However, this way doesn't work for lapic-pt vCPUs. The IPI will be delivered
    to the guest directly without vmexit and the guest will receive a unexpected
    interrupt. Consequently, if the guest can't handle this interrupt properly,
    fatal error may happen.

The NMI can be used as the notification signal to kick the vCPU off VMX
non-root mode for lapic-pt vCPUs. So, this patch uses NMI as notification signal
to address the above issues for lapic-pt vCPUs.

Tracked-On: #3886
Acked-by: Eddie Dong <eddie.dong@intel.com>
Signed-off-by: Kaige Fu <kaige.fu@intel.com>
2019-12-17 09:45:52 +08:00

280 lines
6.5 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <rtl.h>
#include <list.h>
#include <bits.h>
#include <cpu.h>
#include <per_cpu.h>
#include <lapic.h>
#include <schedule.h>
#include <sprintf.h>
bool is_idle_thread(const struct thread_object *obj)
{
uint16_t pcpu_id = obj->pcpu_id;
return (obj == &per_cpu(idle, pcpu_id));
}
static inline bool is_blocked(const struct thread_object *obj)
{
return obj->status == THREAD_STS_BLOCKED;
}
static inline bool is_runnable(const struct thread_object *obj)
{
return obj->status == THREAD_STS_RUNNABLE;
}
static inline bool is_running(const struct thread_object *obj)
{
return obj->status == THREAD_STS_RUNNING;
}
static inline void set_thread_status(struct thread_object *obj, enum thread_object_state status)
{
obj->status = status;
}
void obtain_schedule_lock(uint16_t pcpu_id, uint64_t *rflag)
{
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
spinlock_irqsave_obtain(&ctl->scheduler_lock, rflag);
}
void release_schedule_lock(uint16_t pcpu_id, uint64_t rflag)
{
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
spinlock_irqrestore_release(&ctl->scheduler_lock, rflag);
}
static struct acrn_scheduler *get_scheduler(uint16_t pcpu_id)
{
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
return ctl->scheduler;
}
/**
* @pre obj != NULL
*/
uint16_t sched_get_pcpuid(const struct thread_object *obj)
{
return obj->pcpu_id;
}
void init_sched(uint16_t pcpu_id)
{
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
spinlock_init(&ctl->scheduler_lock);
ctl->flags = 0UL;
ctl->curr_obj = NULL;
ctl->pcpu_id = pcpu_id;
#ifdef CONFIG_SCHED_NOOP
ctl->scheduler = &sched_noop;
#endif
#ifdef CONFIG_SCHED_IORR
ctl->scheduler = &sched_iorr;
#endif
if (ctl->scheduler->init != NULL) {
ctl->scheduler->init(ctl);
}
}
void deinit_sched(uint16_t pcpu_id)
{
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
if (ctl->scheduler->deinit != NULL) {
ctl->scheduler->deinit(ctl);
}
}
void init_thread_data(struct thread_object *obj)
{
struct acrn_scheduler *scheduler = get_scheduler(obj->pcpu_id);
uint64_t rflag;
obtain_schedule_lock(obj->pcpu_id, &rflag);
if (scheduler->init_data != NULL) {
scheduler->init_data(obj);
}
/* initial as BLOCKED status, so we can wake it up to run */
set_thread_status(obj, THREAD_STS_BLOCKED);
release_schedule_lock(obj->pcpu_id, rflag);
}
void deinit_thread_data(struct thread_object *obj)
{
struct acrn_scheduler *scheduler = get_scheduler(obj->pcpu_id);
if (scheduler->deinit_data != NULL) {
scheduler->deinit_data(obj);
}
}
struct thread_object *sched_get_current(uint16_t pcpu_id)
{
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
return ctl->curr_obj;
}
/**
* @pre delmode == DEL_MODE_IPI || delmode == DEL_MODE_INIT || delmode == DEL_MODE_NMI
*/
void make_reschedule_request(uint16_t pcpu_id, uint16_t delmode)
{
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
bitmap_set_lock(NEED_RESCHEDULE, &ctl->flags);
if (get_pcpu_id() != pcpu_id) {
switch (delmode) {
case DEL_MODE_IPI:
send_single_ipi(pcpu_id, VECTOR_NOTIFY_VCPU);
break;
case DEL_MODE_INIT:
send_single_init(pcpu_id);
break;
case DEL_MODE_NMI:
send_single_nmi(pcpu_id);
break;
default:
ASSERT(false, "Unknown delivery mode %u for pCPU%u", delmode, pcpu_id);
break;
}
}
}
bool need_reschedule(uint16_t pcpu_id)
{
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
return bitmap_test(NEED_RESCHEDULE, &ctl->flags);
}
void schedule(void)
{
uint16_t pcpu_id = get_pcpu_id();
struct sched_control *ctl = &per_cpu(sched_ctl, pcpu_id);
struct thread_object *next = &per_cpu(idle, pcpu_id);
struct thread_object *prev = ctl->curr_obj;
uint64_t rflag;
obtain_schedule_lock(pcpu_id, &rflag);
if (ctl->scheduler->pick_next != NULL) {
next = ctl->scheduler->pick_next(ctl);
}
bitmap_clear_lock(NEED_RESCHEDULE, &ctl->flags);
/* Don't change prev object's status if it's not running */
if (is_running(prev)) {
set_thread_status(prev, THREAD_STS_RUNNABLE);
}
set_thread_status(next, THREAD_STS_RUNNING);
ctl->curr_obj = next;
release_schedule_lock(pcpu_id, rflag);
/* If we picked different sched object, switch context */
if (prev != next) {
if ((prev != NULL) && (prev->switch_out != NULL)) {
prev->switch_out(prev);
}
if ((next != NULL) && (next->switch_in != NULL)) {
next->switch_in(next);
}
arch_switch_to(&prev->host_sp, &next->host_sp);
}
}
void sleep_thread(struct thread_object *obj)
{
uint16_t pcpu_id = obj->pcpu_id;
struct acrn_scheduler *scheduler = get_scheduler(pcpu_id);
uint64_t rflag;
obtain_schedule_lock(pcpu_id, &rflag);
if (scheduler->sleep != NULL) {
scheduler->sleep(obj);
}
if (is_running(obj)) {
if (obj->notify_mode == SCHED_NOTIFY_INIT) {
make_reschedule_request(pcpu_id, DEL_MODE_INIT);
} else {
make_reschedule_request(pcpu_id, DEL_MODE_IPI);
}
}
set_thread_status(obj, THREAD_STS_BLOCKED);
release_schedule_lock(pcpu_id, rflag);
}
void wake_thread(struct thread_object *obj)
{
uint16_t pcpu_id = obj->pcpu_id;
struct acrn_scheduler *scheduler;
uint64_t rflag;
obtain_schedule_lock(pcpu_id, &rflag);
if (is_blocked(obj)) {
scheduler = get_scheduler(pcpu_id);
if (scheduler->wake != NULL) {
scheduler->wake(obj);
}
set_thread_status(obj, THREAD_STS_RUNNABLE);
make_reschedule_request(pcpu_id, DEL_MODE_IPI);
}
release_schedule_lock(pcpu_id, rflag);
}
void kick_thread(const struct thread_object *obj)
{
uint16_t pcpu_id = obj->pcpu_id;
uint64_t rflag;
obtain_schedule_lock(pcpu_id, &rflag);
if (is_running(obj)) {
if (get_pcpu_id() != pcpu_id) {
if (obj->notify_mode == SCHED_NOTIFY_IPI) {
send_single_ipi(pcpu_id, VECTOR_NOTIFY_VCPU);
} else {
/* For lapic-pt vCPUs */
send_single_nmi(pcpu_id);
}
}
} else if (is_runnable(obj)) {
if (obj->notify_mode == SCHED_NOTIFY_IPI) {
make_reschedule_request(pcpu_id, DEL_MODE_IPI);
} else {
/* For lapic-pt vCPUs */
make_reschedule_request(pcpu_id, DEL_MODE_NMI);
}
} else {
/* do nothing */
}
release_schedule_lock(pcpu_id, rflag);
}
void yield_current(void)
{
make_reschedule_request(get_pcpu_id(), DEL_MODE_IPI);
}
void run_thread(struct thread_object *obj)
{
uint64_t rflag;
init_thread_data(obj);
obtain_schedule_lock(obj->pcpu_id, &rflag);
get_cpu_var(sched_ctl).curr_obj = obj;
set_thread_status(obj, THREAD_STS_RUNNING);
release_schedule_lock(obj->pcpu_id, rflag);
if (obj->thread_entry != NULL) {
obj->thread_entry(obj);
}
}