acrn-hypervisor/hypervisor/arch/x86/guest/trusty.c
Victor Sun 6071234337 HV: use term of UUID
The code mixed the usage on term of UUID and GUID, now use UUID to make
code more consistent, also will use lowercase (i.e. uuid) in variable name
definition.

Tracked-On: #2291

Signed-off-by: Victor Sun <victor.sun@intel.com>
Acked-by: Eddie Dong <eddie.dong@intel.com>
2019-04-12 13:45:32 +08:00

482 lines
15 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <bits.h>
#include <crypto_api.h>
#include <trusty.h>
#include <page.h>
#include <pgtable.h>
#include <mmu.h>
#include <ept.h>
#include <vm.h>
#include <vmx.h>
#include <security.h>
#include <logmsg.h>
#include <seed.h>
#define TRUSTY_VERSION 1U
#define TRUSTY_VERSION_2 2U
struct trusty_mem {
/* The first page of trusty memory is reserved for key_info and trusty_startup_param. */
struct {
struct trusty_key_info key_info;
struct trusty_startup_param startup_param;
} first_page;
/* The left memory is for trusty's code/data/heap/stack */
} __aligned(PAGE_SIZE);
/**
* @defgroup trusty_apis Trusty APIs
*
* This is a special group that includes all APIs
* related to Trusty
*
* @{
*/
/**
* @brief Create Secure World EPT hierarchy
*
* Create Secure World EPT hierarchy, construct new PML4/PDPT, reuse PD/PT parse from
* vm->arch_vm->ept
*
* @param vm pointer to a VM with 2 Worlds
* @param gpa_orig original gpa allocated from vSBL
* @param size LK size (16M by default)
* @param gpa_rebased gpa rebased to offset xxx (511G_OFFSET)
*
*/
static void create_secure_world_ept(struct acrn_vm *vm, uint64_t gpa_orig,
uint64_t size, uint64_t gpa_rebased)
{
uint64_t nworld_pml4e;
uint64_t sworld_pml4e;
/* Check the HPA of parameter gpa_orig when invoking check_continuos_hpa */
uint64_t hpa;
uint64_t table_present = EPT_RWX;
uint64_t pdpte, *dest_pdpte_p, *src_pdpte_p;
void *sub_table_addr, *pml4_base;
uint16_t i;
hpa = gpa2hpa(vm, gpa_orig);
/* Unmap gpa_orig~gpa_orig+size from guest normal world ept mapping */
ept_mr_del(vm, (uint64_t *)vm->arch_vm.nworld_eptp, gpa_orig, size);
/* Copy PDPT entries from Normal world to Secure world
* Secure world can access Normal World's memory,
* but Normal World can not access Secure World's memory.
* The PML4/PDPT for Secure world are separated from
* Normal World.PD/PT are shared in both Secure world's EPT
* and Normal World's EPT
*/
pml4_base = vm->arch_vm.ept_mem_ops.info->ept.sworld_pgtable_base;
(void)memset(pml4_base, 0U, PAGE_SIZE);
vm->arch_vm.sworld_eptp = pml4_base;
sanitize_pte((uint64_t *)vm->arch_vm.sworld_eptp);
/* The trusty memory is remapped to guest physical address
* of gpa_rebased to gpa_rebased + size
*/
sub_table_addr = vm->arch_vm.ept_mem_ops.info->ept.sworld_pgtable_base +
TRUSTY_PML4_PAGE_NUM(TRUSTY_EPT_REBASE_GPA);
(void)memset(sub_table_addr, 0U, PAGE_SIZE);
sworld_pml4e = hva2hpa(sub_table_addr) | table_present;
set_pgentry((uint64_t *)pml4_base, sworld_pml4e);
nworld_pml4e = get_pgentry((uint64_t *)vm->arch_vm.nworld_eptp);
/*
* copy PTPDEs from normal world EPT to secure world EPT,
* and remove execute access attribute in these entries
*/
dest_pdpte_p = pml4e_page_vaddr(sworld_pml4e);
src_pdpte_p = pml4e_page_vaddr(nworld_pml4e);
for (i = 0U; i < (uint16_t)(PTRS_PER_PDPTE - 1UL); i++) {
pdpte = get_pgentry(src_pdpte_p);
if ((pdpte & table_present) != 0UL) {
pdpte &= ~EPT_EXE;
set_pgentry(dest_pdpte_p, pdpte);
}
src_pdpte_p++;
dest_pdpte_p++;
}
/* Map [gpa_rebased, gpa_rebased + size) to secure ept mapping */
ept_mr_add(vm, (uint64_t *)vm->arch_vm.sworld_eptp, hpa, gpa_rebased, size, EPT_RWX | EPT_WB);
/* Backup secure world info, will be used when destroy secure world and suspend UOS */
vm->sworld_control.sworld_memory.base_gpa_in_uos = gpa_orig;
vm->sworld_control.sworld_memory.base_hpa = hpa;
vm->sworld_control.sworld_memory.length = size;
}
void destroy_secure_world(struct acrn_vm *vm, bool need_clr_mem)
{
uint64_t hpa = vm->sworld_control.sworld_memory.base_hpa;
uint64_t gpa_uos = vm->sworld_control.sworld_memory.base_gpa_in_uos;
uint64_t size = vm->sworld_control.sworld_memory.length;
if (vm->arch_vm.sworld_eptp != NULL) {
if (need_clr_mem) {
/* clear trusty memory space */
stac();
(void)memset(hpa2hva(hpa), 0U, (size_t)size);
clac();
}
ept_mr_del(vm, vm->arch_vm.sworld_eptp, gpa_uos, size);
/* sanitize trusty ept page-structures */
sanitize_pte((uint64_t *)vm->arch_vm.sworld_eptp);
vm->arch_vm.sworld_eptp = NULL;
/* Restore memory to guest normal world */
ept_mr_add(vm, vm->arch_vm.nworld_eptp, hpa, gpa_uos, size, EPT_RWX | EPT_WB);
} else {
pr_err("sworld eptp is NULL, it's not created");
}
}
static inline void save_fxstore_guest_area(struct ext_context *ext_ctx)
{
asm volatile("fxsave (%0)"
: : "r" (ext_ctx->fxstore_guest_area) : "memory");
}
static inline void rstor_fxstore_guest_area(const struct ext_context *ext_ctx)
{
asm volatile("fxrstor (%0)" : : "r" (ext_ctx->fxstore_guest_area));
}
static void save_world_ctx(struct acrn_vcpu *vcpu, struct ext_context *ext_ctx)
{
uint32_t i;
/* cache on-demand run_context for efer/rflags/rsp/rip/cr0/cr4 */
(void)vcpu_get_efer(vcpu);
(void)vcpu_get_rflags(vcpu);
(void)vcpu_get_rsp(vcpu);
(void)vcpu_get_rip(vcpu);
(void)vcpu_get_cr0(vcpu);
(void)vcpu_get_cr4(vcpu);
/* VMCS GUEST field */
ext_ctx->tsc_offset = exec_vmread(VMX_TSC_OFFSET_FULL);
ext_ctx->cr3 = exec_vmread(VMX_GUEST_CR3);
ext_ctx->dr7 = exec_vmread(VMX_GUEST_DR7);
ext_ctx->ia32_debugctl = exec_vmread64(VMX_GUEST_IA32_DEBUGCTL_FULL);
/*
* Similar to CR0 and CR4, the actual value of guest's IA32_PAT MSR
* (represented by ext_ctx->ia32_pat) could be different from the
* value that guest reads (guest_msrs[IA32_PAT]).
*
* the wrmsr handler keeps track of 'guest_msrs', and we only
* need to save/load 'ext_ctx->ia32_pat' in world switch.
*/
ext_ctx->ia32_pat = exec_vmread64(VMX_GUEST_IA32_PAT_FULL);
ext_ctx->ia32_sysenter_esp = exec_vmread(VMX_GUEST_IA32_SYSENTER_ESP);
ext_ctx->ia32_sysenter_eip = exec_vmread(VMX_GUEST_IA32_SYSENTER_EIP);
ext_ctx->ia32_sysenter_cs = exec_vmread32(VMX_GUEST_IA32_SYSENTER_CS);
save_segment(ext_ctx->cs, VMX_GUEST_CS);
save_segment(ext_ctx->ss, VMX_GUEST_SS);
save_segment(ext_ctx->ds, VMX_GUEST_DS);
save_segment(ext_ctx->es, VMX_GUEST_ES);
save_segment(ext_ctx->fs, VMX_GUEST_FS);
save_segment(ext_ctx->gs, VMX_GUEST_GS);
save_segment(ext_ctx->tr, VMX_GUEST_TR);
save_segment(ext_ctx->ldtr, VMX_GUEST_LDTR);
/* Only base and limit for IDTR and GDTR */
ext_ctx->idtr.base = exec_vmread(VMX_GUEST_IDTR_BASE);
ext_ctx->gdtr.base = exec_vmread(VMX_GUEST_GDTR_BASE);
ext_ctx->idtr.limit = exec_vmread32(VMX_GUEST_IDTR_LIMIT);
ext_ctx->gdtr.limit = exec_vmread32(VMX_GUEST_GDTR_LIMIT);
/* MSRs which not in the VMCS */
ext_ctx->ia32_star = msr_read(MSR_IA32_STAR);
ext_ctx->ia32_lstar = msr_read(MSR_IA32_LSTAR);
ext_ctx->ia32_fmask = msr_read(MSR_IA32_FMASK);
ext_ctx->ia32_kernel_gs_base = msr_read(MSR_IA32_KERNEL_GS_BASE);
/* FX area */
save_fxstore_guest_area(ext_ctx);
/* For MSRs need isolation between worlds */
for (i = 0U; i < NUM_WORLD_MSRS; i++) {
vcpu->arch.contexts[vcpu->arch.cur_context].world_msrs[i] = vcpu->arch.guest_msrs[i];
}
}
static void load_world_ctx(struct acrn_vcpu *vcpu, const struct ext_context *ext_ctx)
{
uint32_t i;
/* mark to update on-demand run_context for efer/rflags/rsp/rip/cr0/cr4 */
bitmap_set_lock(CPU_REG_EFER, &vcpu->reg_updated);
bitmap_set_lock(CPU_REG_RFLAGS, &vcpu->reg_updated);
bitmap_set_lock(CPU_REG_RSP, &vcpu->reg_updated);
bitmap_set_lock(CPU_REG_RIP, &vcpu->reg_updated);
bitmap_set_lock(CPU_REG_CR0, &vcpu->reg_updated);
bitmap_set_lock(CPU_REG_CR4, &vcpu->reg_updated);
/* VMCS Execution field */
exec_vmwrite64(VMX_TSC_OFFSET_FULL, ext_ctx->tsc_offset);
/* VMCS GUEST field */
exec_vmwrite(VMX_GUEST_CR3, ext_ctx->cr3);
exec_vmwrite(VMX_GUEST_DR7, ext_ctx->dr7);
exec_vmwrite64(VMX_GUEST_IA32_DEBUGCTL_FULL, ext_ctx->ia32_debugctl);
exec_vmwrite64(VMX_GUEST_IA32_PAT_FULL, ext_ctx->ia32_pat);
exec_vmwrite32(VMX_GUEST_IA32_SYSENTER_CS, ext_ctx->ia32_sysenter_cs);
exec_vmwrite(VMX_GUEST_IA32_SYSENTER_ESP, ext_ctx->ia32_sysenter_esp);
exec_vmwrite(VMX_GUEST_IA32_SYSENTER_EIP, ext_ctx->ia32_sysenter_eip);
load_segment(ext_ctx->cs, VMX_GUEST_CS);
load_segment(ext_ctx->ss, VMX_GUEST_SS);
load_segment(ext_ctx->ds, VMX_GUEST_DS);
load_segment(ext_ctx->es, VMX_GUEST_ES);
load_segment(ext_ctx->fs, VMX_GUEST_FS);
load_segment(ext_ctx->gs, VMX_GUEST_GS);
load_segment(ext_ctx->tr, VMX_GUEST_TR);
load_segment(ext_ctx->ldtr, VMX_GUEST_LDTR);
/* Only base and limit for IDTR and GDTR */
exec_vmwrite(VMX_GUEST_IDTR_BASE, ext_ctx->idtr.base);
exec_vmwrite(VMX_GUEST_GDTR_BASE, ext_ctx->gdtr.base);
exec_vmwrite32(VMX_GUEST_IDTR_LIMIT, ext_ctx->idtr.limit);
exec_vmwrite32(VMX_GUEST_GDTR_LIMIT, ext_ctx->gdtr.limit);
/* MSRs which not in the VMCS */
msr_write(MSR_IA32_STAR, ext_ctx->ia32_star);
msr_write(MSR_IA32_LSTAR, ext_ctx->ia32_lstar);
msr_write(MSR_IA32_FMASK, ext_ctx->ia32_fmask);
msr_write(MSR_IA32_KERNEL_GS_BASE, ext_ctx->ia32_kernel_gs_base);
/* FX area */
rstor_fxstore_guest_area(ext_ctx);
/* For MSRs need isolation between worlds */
for (i = 0U; i < NUM_WORLD_MSRS; i++) {
vcpu->arch.guest_msrs[i] = vcpu->arch.contexts[!vcpu->arch.cur_context].world_msrs[i];
}
}
static void copy_smc_param(const struct run_context *prev_ctx,
struct run_context *next_ctx)
{
next_ctx->guest_cpu_regs.regs.rdi = prev_ctx->guest_cpu_regs.regs.rdi;
next_ctx->guest_cpu_regs.regs.rsi = prev_ctx->guest_cpu_regs.regs.rsi;
next_ctx->guest_cpu_regs.regs.rdx = prev_ctx->guest_cpu_regs.regs.rdx;
next_ctx->guest_cpu_regs.regs.rbx = prev_ctx->guest_cpu_regs.regs.rbx;
}
void switch_world(struct acrn_vcpu *vcpu, int32_t next_world)
{
struct acrn_vcpu_arch *arch = &vcpu->arch;
/* save previous world context */
save_world_ctx(vcpu, &arch->contexts[!next_world].ext_ctx);
/* load next world context */
load_world_ctx(vcpu, &arch->contexts[next_world].ext_ctx);
/* Copy SMC parameters: RDI, RSI, RDX, RBX */
copy_smc_param(&arch->contexts[!next_world].run_ctx,
&arch->contexts[next_world].run_ctx);
if (next_world == NORMAL_WORLD) {
/* load EPTP for next world */
exec_vmwrite64(VMX_EPT_POINTER_FULL,
hva2hpa(vcpu->vm->arch_vm.nworld_eptp) |
(3UL << 3U) | 0x6UL);
#ifndef CONFIG_L1D_FLUSH_VMENTRY_ENABLED
cpu_l1d_flush();
#endif
} else {
exec_vmwrite64(VMX_EPT_POINTER_FULL,
hva2hpa(vcpu->vm->arch_vm.sworld_eptp) |
(3UL << 3U) | 0x6UL);
}
/* Update world index */
arch->cur_context = next_world;
}
/* Put key_info and trusty_startup_param in the first Page of Trusty
* runtime memory
*/
static bool setup_trusty_info(struct acrn_vcpu *vcpu, uint32_t mem_size, uint64_t mem_base_hpa, uint8_t *rkey)
{
bool success = false;
struct trusty_mem *mem;
struct trusty_key_info key_info;
struct trusty_startup_param startup_param;
(void)memset(&key_info, 0U, sizeof(key_info));
key_info.size_of_this_struct = sizeof(struct trusty_key_info);
key_info.version = 0U;
key_info.platform = 3U;
if (rkey != NULL) {
(void)memcpy_s(key_info.rpmb_key, 64U, rkey, 64U);
(void)memset(rkey, 0U, 64U);
}
/* Derive dvseed from dseed for Trusty */
if (derive_virtual_seed(&key_info.dseed_list[0U], &key_info.num_seeds,
NULL, 0U,
vcpu->vm->uuid, sizeof(vcpu->vm->uuid))) {
/* Derive encryption key of attestation keybox from dseed */
if (derive_attkb_enc_key(key_info.attkb_enc_key)) {
/* Prepare trusty startup param */
startup_param.size_of_this_struct = sizeof(struct trusty_startup_param);
startup_param.mem_size = mem_size;
startup_param.tsc_per_ms = CYCLES_PER_MS;
startup_param.trusty_mem_base = TRUSTY_EPT_REBASE_GPA;
/* According to trusty boot protocol, it will use RDI as the
* address(GPA) of startup_param on boot. Currently, the startup_param
* is put in the first page of trusty memory just followed by key_info.
*/
vcpu->arch.contexts[SECURE_WORLD].run_ctx.guest_cpu_regs.regs.rdi
= (uint64_t)TRUSTY_EPT_REBASE_GPA + sizeof(struct trusty_key_info);
stac();
mem = (struct trusty_mem *)(hpa2hva(mem_base_hpa));
(void)memcpy_s(&mem->first_page.key_info, sizeof(struct trusty_key_info),
&key_info, sizeof(key_info));
(void)memcpy_s(&mem->first_page.startup_param, sizeof(struct trusty_startup_param),
&startup_param, sizeof(startup_param));
clac();
success = true;
}
}
(void)memset(&key_info, 0U, sizeof(key_info));
return success;
}
/* Secure World will reuse environment of UOS_Loder since they are
* both booting from and running in 64bit mode, except GP registers.
* RIP, RSP and RDI are specified below, other GP registers are leaved
* as 0.
*/
static bool init_secure_world_env(struct acrn_vcpu *vcpu,
uint64_t entry_gpa,
uint64_t base_hpa,
uint32_t size,
uint8_t *rpmb_key)
{
uint32_t i;
vcpu->arch.inst_len = 0U;
vcpu->arch.contexts[SECURE_WORLD].run_ctx.rip = entry_gpa;
vcpu->arch.contexts[SECURE_WORLD].run_ctx.guest_cpu_regs.regs.rsp =
TRUSTY_EPT_REBASE_GPA + size;
vcpu->arch.contexts[SECURE_WORLD].ext_ctx.tsc_offset = 0UL;
/* Init per world MSRs */
for (i = 0U; i < NUM_WORLD_MSRS; i++) {
vcpu->arch.contexts[NORMAL_WORLD].world_msrs[i] = vcpu->arch.guest_msrs[i];
vcpu->arch.contexts[SECURE_WORLD].world_msrs[i] = vcpu->arch.guest_msrs[i];
}
return setup_trusty_info(vcpu, size, base_hpa, rpmb_key);
}
bool initialize_trusty(struct acrn_vcpu *vcpu, struct trusty_boot_param *boot_param)
{
bool success = true;
uint64_t trusty_entry_gpa, trusty_base_gpa, trusty_base_hpa;
uint32_t trusty_mem_size;
struct acrn_vm *vm = vcpu->vm;
uint8_t *rpmb_key = NULL;
switch (boot_param->version) {
case TRUSTY_VERSION_2:
trusty_entry_gpa = ((uint64_t)boot_param->entry_point) |
(((uint64_t)boot_param->entry_point_high) << 32U);
trusty_base_gpa = ((uint64_t)boot_param->base_addr) |
(((uint64_t)boot_param->base_addr_high) << 32U);
rpmb_key = boot_param->rpmb_key;
break;
case TRUSTY_VERSION:
trusty_entry_gpa = (uint64_t)boot_param->entry_point;
trusty_base_gpa = (uint64_t)boot_param->base_addr;
break;
default:
pr_err("%s: Version(%u) not supported!\n", __func__, boot_param->version);
success = false;
break;
}
if (success) {
if ((vm->sworld_control.flag.supported == 0UL)
|| (vm->arch_vm.sworld_eptp != NULL)) {
pr_err("Sworld is not supported or Sworld eptp is not NULL");
success = false;
} else {
trusty_mem_size = boot_param->mem_size;
create_secure_world_ept(vm, trusty_base_gpa, trusty_mem_size,
TRUSTY_EPT_REBASE_GPA);
trusty_base_hpa = vm->sworld_control.sworld_memory.base_hpa;
exec_vmwrite64(VMX_EPT_POINTER_FULL,
hva2hpa(vm->arch_vm.sworld_eptp) | (3UL << 3U) | 0x6UL);
/* save Normal World context */
save_world_ctx(vcpu, &vcpu->arch.contexts[NORMAL_WORLD].ext_ctx);
/* init secure world environment */
if (init_secure_world_env(vcpu,
(trusty_entry_gpa - trusty_base_gpa) + TRUSTY_EPT_REBASE_GPA,
trusty_base_hpa, trusty_mem_size, rpmb_key)) {
/* switch to Secure World */
vcpu->arch.cur_context = SECURE_WORLD;
} else {
success = false;
}
}
}
return success;
}
void save_sworld_context(struct acrn_vcpu *vcpu)
{
(void)memcpy_s(&vcpu->vm->sworld_snapshot,
sizeof(struct cpu_context),
&vcpu->arch.contexts[SECURE_WORLD],
sizeof(struct cpu_context));
}
void restore_sworld_context(struct acrn_vcpu *vcpu)
{
struct secure_world_control *sworld_ctl =
&vcpu->vm->sworld_control;
create_secure_world_ept(vcpu->vm,
sworld_ctl->sworld_memory.base_gpa_in_uos,
sworld_ctl->sworld_memory.length,
TRUSTY_EPT_REBASE_GPA);
(void)memcpy_s(&vcpu->arch.contexts[SECURE_WORLD],
sizeof(struct cpu_context),
&vcpu->vm->sworld_snapshot,
sizeof(struct cpu_context));
}
/**
* @}
*/
/* End of trusty_apis */