acrn-hypervisor/hypervisor/arch/x86/guest/vcpu.c
Jason Chen CJ 8aae0dff87 scheduler: refine make_reschedule_request
just use pcpu_id for make_reschedule_request is enough

Tracked-On: #1842
Signed-off-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Anthony Xu <anthony.xu@intel.com>
Acked-by: Eddie Dong <edide.dong@intel.com>
2018-12-21 10:34:15 +08:00

636 lines
16 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <schedule.h>
#include <vm0_boot.h>
#include <security.h>
vm_sw_loader_t vm_sw_loader;
inline uint64_t vcpu_get_gpreg(const struct acrn_vcpu *vcpu, uint32_t reg)
{
const struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
return ctx->guest_cpu_regs.longs[reg];
}
inline void vcpu_set_gpreg(struct acrn_vcpu *vcpu, uint32_t reg, uint64_t val)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
ctx->guest_cpu_regs.longs[reg] = val;
}
inline uint64_t vcpu_get_rip(struct acrn_vcpu *vcpu)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (bitmap_test(CPU_REG_RIP, &vcpu->reg_updated) == 0 &&
bitmap_test_and_set_lock(CPU_REG_RIP, &vcpu->reg_cached) == 0)
ctx->rip = exec_vmread(VMX_GUEST_RIP);
return ctx->rip;
}
inline void vcpu_set_rip(struct acrn_vcpu *vcpu, uint64_t val)
{
vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.rip = val;
bitmap_set_lock(CPU_REG_RIP, &vcpu->reg_updated);
}
inline uint64_t vcpu_get_rsp(struct acrn_vcpu *vcpu)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
return ctx->guest_cpu_regs.regs.rsp;
}
inline void vcpu_set_rsp(struct acrn_vcpu *vcpu, uint64_t val)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
ctx->guest_cpu_regs.regs.rsp = val;
bitmap_set_lock(CPU_REG_RSP, &vcpu->reg_updated);
}
inline uint64_t vcpu_get_efer(struct acrn_vcpu *vcpu)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (bitmap_test(CPU_REG_EFER, &vcpu->reg_updated) == 0 &&
bitmap_test_and_set_lock(CPU_REG_EFER, &vcpu->reg_cached) == 0)
ctx->ia32_efer = exec_vmread64(VMX_GUEST_IA32_EFER_FULL);
return ctx->ia32_efer;
}
inline void vcpu_set_efer(struct acrn_vcpu *vcpu, uint64_t val)
{
vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.ia32_efer
= val;
bitmap_set_lock(CPU_REG_EFER, &vcpu->reg_updated);
}
inline uint64_t vcpu_get_rflags(struct acrn_vcpu *vcpu)
{
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (bitmap_test(CPU_REG_RFLAGS, &vcpu->reg_updated) == 0 &&
bitmap_test_and_set_lock(CPU_REG_RFLAGS,
&vcpu->reg_cached) == 0 && vcpu->launched)
ctx->rflags = exec_vmread(VMX_GUEST_RFLAGS);
return ctx->rflags;
}
inline void vcpu_set_rflags(struct acrn_vcpu *vcpu, uint64_t val)
{
vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.rflags =
val;
bitmap_set_lock(CPU_REG_RFLAGS, &vcpu->reg_updated);
}
inline uint64_t vcpu_get_cr0(struct acrn_vcpu *vcpu)
{
uint64_t mask;
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (bitmap_test_and_set_lock(CPU_REG_CR0, &vcpu->reg_cached) == 0) {
mask = exec_vmread(VMX_CR0_MASK);
ctx->cr0 = (exec_vmread(VMX_CR0_READ_SHADOW) & mask) |
(exec_vmread(VMX_GUEST_CR0) & (~mask));
}
return ctx->cr0;
}
inline void vcpu_set_cr0(struct acrn_vcpu *vcpu, uint64_t val)
{
vmx_write_cr0(vcpu, val);
}
inline uint64_t vcpu_get_cr2(struct acrn_vcpu *vcpu)
{
return vcpu->
arch.contexts[vcpu->arch.cur_context].run_ctx.cr2;
}
inline void vcpu_set_cr2(struct acrn_vcpu *vcpu, uint64_t val)
{
vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx.cr2 = val;
}
inline uint64_t vcpu_get_cr4(struct acrn_vcpu *vcpu)
{
uint64_t mask;
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
if (bitmap_test_and_set_lock(CPU_REG_CR4, &vcpu->reg_cached) == 0) {
mask = exec_vmread(VMX_CR4_MASK);
ctx->cr4 = (exec_vmread(VMX_CR4_READ_SHADOW) & mask) |
(exec_vmread(VMX_GUEST_CR4) & (~mask));
}
return ctx->cr4;
}
inline void vcpu_set_cr4(struct acrn_vcpu *vcpu, uint64_t val)
{
vmx_write_cr4(vcpu, val);
}
uint64_t vcpu_get_guest_msr(const struct acrn_vcpu *vcpu, uint32_t msr)
{
uint32_t index = vmsr_get_guest_msr_index(msr);
uint64_t val = 0UL;
if (index < NUM_GUEST_MSRS) {
val = vcpu->arch.guest_msrs[index];
}
return val;
}
void vcpu_set_guest_msr(struct acrn_vcpu *vcpu, uint32_t msr, uint64_t val)
{
uint32_t index = vmsr_get_guest_msr_index(msr);
if (index < NUM_GUEST_MSRS) {
vcpu->arch.guest_msrs[index] = val;
}
}
struct acrn_vcpu *get_ever_run_vcpu(uint16_t pcpu_id)
{
return per_cpu(ever_run_vcpu, pcpu_id);
}
static void set_vcpu_mode(struct acrn_vcpu *vcpu, uint32_t cs_attr, uint64_t ia32_efer,
uint64_t cr0)
{
if (ia32_efer & MSR_IA32_EFER_LMA_BIT) {
if (cs_attr & 0x2000U) {
/* CS.L = 1 */
vcpu->arch.cpu_mode = CPU_MODE_64BIT;
} else {
vcpu->arch.cpu_mode = CPU_MODE_COMPATIBILITY;
}
} else if (cr0 & CR0_PE) {
vcpu->arch.cpu_mode = CPU_MODE_PROTECTED;
} else {
vcpu->arch.cpu_mode = CPU_MODE_REAL;
}
}
void set_vcpu_regs(struct acrn_vcpu *vcpu, struct acrn_vcpu_regs *vcpu_regs)
{
struct ext_context *ectx;
struct run_context *ctx;
uint16_t *sel = &(vcpu_regs->cs_sel);
struct segment_sel *seg;
uint32_t limit, attr;
ectx = &(vcpu->arch.contexts[vcpu->arch.cur_context].ext_ctx);
ctx = &(vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx);
/* NOTE:
* This is to set the attr and limit to default value.
* If the set_vcpu_regs is used not only for vcpu state
* initialization, this part of code needs be revised.
*/
if (vcpu_regs->cr0 & CR0_PE) {
attr = PROTECTED_MODE_DATA_SEG_AR;
limit = PROTECTED_MODE_SEG_LIMIT;
} else {
attr = REAL_MODE_DATA_SEG_AR;
limit = REAL_MODE_SEG_LIMIT;
}
for (seg = &(ectx->cs); seg <= &(ectx->gs); seg++) {
seg->base = 0UL;
seg->limit = limit;
seg->attr = attr;
seg->selector = *sel;
sel++;
}
/* override cs attr/base/limit */
ectx->cs.attr = vcpu_regs->cs_ar;
ectx->cs.base = vcpu_regs->cs_base;
ectx->cs.limit = vcpu_regs->cs_limit;
ectx->gdtr.base = vcpu_regs->gdt.base;
ectx->gdtr.limit = vcpu_regs->gdt.limit;
ectx->idtr.base = vcpu_regs->idt.base;
ectx->idtr.limit = vcpu_regs->idt.limit;
ectx->ldtr.selector = vcpu_regs->ldt_sel;
ectx->tr.selector = vcpu_regs->tr_sel;
/* NOTE:
* This is to set the ldtr and tr to default value.
* If the set_vcpu_regs is used not only for vcpu state
* initialization, this part of code needs be revised.
*/
ectx->ldtr.base = 0UL;
ectx->tr.base = 0UL;
ectx->ldtr.limit = 0xFFFFU;
ectx->tr.limit = 0xFFFFU;
ectx->ldtr.attr = LDTR_AR;
ectx->tr.attr = TR_AR;
memcpy_s(&(ctx->guest_cpu_regs), sizeof(struct acrn_gp_regs),
&(vcpu_regs->gprs), sizeof(struct acrn_gp_regs));
vcpu_set_rip(vcpu, vcpu_regs->rip);
vcpu_set_efer(vcpu, vcpu_regs->ia32_efer);
vcpu_set_rsp(vcpu, vcpu_regs->gprs.rsp);
if (vcpu_regs->rflags == 0UL) {
vcpu_set_rflags(vcpu, 0x02UL);
} else {
vcpu_set_rflags(vcpu, vcpu_regs->rflags & ~(0x8d5UL));
}
/* cr0, cr3 and cr4 needs be set without using API.
* The real cr0/cr3/cr4 writing will be delayed to
* init_vmcs
*/
ctx->cr0 = vcpu_regs->cr0;
ectx->cr3 = vcpu_regs->cr3;
ctx->cr4 = vcpu_regs->cr4;
set_vcpu_mode(vcpu, vcpu_regs->cs_ar, vcpu_regs->ia32_efer,
vcpu_regs->cr0);
}
static struct acrn_vcpu_regs realmode_init_regs = {
.gdt = {
.limit = 0xFFFFU,
.base = 0UL,
},
.idt = {
.limit = 0xFFFFU,
.base = 0UL,
},
.cs_ar = REAL_MODE_CODE_SEG_AR,
.cs_sel = REAL_MODE_BSP_INIT_CODE_SEL,
.cs_base = 0xFFFF0000UL,
.cs_limit = 0xFFFFU,
.rip = 0xFFF0UL,
.cr0 = CR0_ET | CR0_NE,
.cr3 = 0UL,
.cr4 = 0UL,
};
void reset_vcpu_regs(struct acrn_vcpu *vcpu)
{
set_vcpu_regs(vcpu, &realmode_init_regs);
}
void set_ap_entry(struct acrn_vcpu *vcpu, uint64_t entry)
{
struct ext_context *ectx;
ectx = &(vcpu->arch.contexts[vcpu->arch.cur_context].ext_ctx);
ectx->cs.selector = (uint16_t)((entry >> 4U) & 0xFFFFU);
ectx->cs.base = ectx->cs.selector << 4U;
vcpu_set_rip(vcpu, 0UL);
}
/***********************************************************************
*
* @pre vm != NULL && rtn_vcpu_handle != NULL
*
* vcpu_id/pcpu_id mapping table:
*
* if
* VM0_CPUS[2] = {0, 2} , VM1_CPUS[2] = {3, 1};
* then
* for physical CPU 0 : vcpu->pcpu_id = 0, vcpu->vcpu_id = 0, vmid = 0;
* for physical CPU 2 : vcpu->pcpu_id = 2, vcpu->vcpu_id = 1, vmid = 0;
* for physical CPU 3 : vcpu->pcpu_id = 3, vcpu->vcpu_id = 0, vmid = 1;
* for physical CPU 1 : vcpu->pcpu_id = 1, vcpu->vcpu_id = 1, vmid = 1;
*
***********************************************************************/
int32_t create_vcpu(uint16_t pcpu_id, struct acrn_vm *vm, struct acrn_vcpu **rtn_vcpu_handle)
{
struct acrn_vcpu *vcpu;
uint16_t vcpu_id;
pr_info("Creating VCPU working on PCPU%hu", pcpu_id);
/*
* vcpu->vcpu_id = vm->hw.created_vcpus;
* vm->hw.created_vcpus++;
*/
vcpu_id = atomic_xadd16(&vm->hw.created_vcpus, 1U);
if (vcpu_id >= CONFIG_MAX_VCPUS_PER_VM) {
vm->hw.created_vcpus--;
pr_err("%s, vcpu id is invalid!\n", __func__);
return -EINVAL;
}
/* Allocate memory for VCPU */
vcpu = &(vm->hw.vcpu_array[vcpu_id]);
(void)memset((void *)vcpu, 0U, sizeof(struct acrn_vcpu));
/* Initialize CPU ID for this VCPU */
vcpu->vcpu_id = vcpu_id;
vcpu->pcpu_id = pcpu_id;
per_cpu(ever_run_vcpu, pcpu_id) = vcpu;
/* Initialize the parent VM reference */
vcpu->vm = vm;
/* Initialize the virtual ID for this VCPU */
/* FIXME:
* We have assumption that we always destroys vcpus in one
* shot (like when vm is destroyed). If we need to support
* specific vcpu destroy on fly, this vcpu_id assignment
* needs revise.
*/
per_cpu(vcpu, pcpu_id) = vcpu;
pr_info("PCPU%d is working as VM%d VCPU%d, Role: %s",
vcpu->pcpu_id, vcpu->vm->vm_id, vcpu->vcpu_id,
is_vcpu_bsp(vcpu) ? "PRIMARY" : "SECONDARY");
vcpu->arch.vpid = allocate_vpid();
/* Initialize exception field in VCPU context */
vcpu->arch.exception_info.exception = VECTOR_INVALID;
/* Initialize cur context */
vcpu->arch.cur_context = NORMAL_WORLD;
/* Create per vcpu vlapic */
vlapic_create(vcpu);
#ifdef CONFIG_MTRR_ENABLED
init_vmtrr(vcpu);
#endif
/* Populate the return handle */
*rtn_vcpu_handle = vcpu;
vcpu->launched = false;
vcpu->paused_cnt = 0U;
vcpu->running = 0;
vcpu->arch.nr_sipi = 0;
vcpu->pending_pre_work = 0U;
vcpu->state = VCPU_INIT;
reset_vcpu_regs(vcpu);
(void)memset(&vcpu->req, 0U, sizeof(struct io_request));
return 0;
}
/*
* @pre vcpu != NULL
*/
int32_t run_vcpu(struct acrn_vcpu *vcpu)
{
uint32_t instlen, cs_attr;
uint64_t rip, ia32_efer, cr0;
struct run_context *ctx =
&vcpu->arch.contexts[vcpu->arch.cur_context].run_ctx;
int64_t status = 0;
int32_t ibrs_type = get_ibrs_type();
if (bitmap_test_and_clear_lock(CPU_REG_RIP, &vcpu->reg_updated))
exec_vmwrite(VMX_GUEST_RIP, ctx->rip);
if (bitmap_test_and_clear_lock(CPU_REG_RSP, &vcpu->reg_updated))
exec_vmwrite(VMX_GUEST_RSP, ctx->guest_cpu_regs.regs.rsp);
if (bitmap_test_and_clear_lock(CPU_REG_EFER, &vcpu->reg_updated))
exec_vmwrite64(VMX_GUEST_IA32_EFER_FULL, ctx->ia32_efer);
if (bitmap_test_and_clear_lock(CPU_REG_RFLAGS, &vcpu->reg_updated))
exec_vmwrite(VMX_GUEST_RFLAGS, ctx->rflags);
/* If this VCPU is not already launched, launch it */
if (!vcpu->launched) {
pr_info("VM %d Starting VCPU %hu",
vcpu->vm->vm_id, vcpu->vcpu_id);
if (vcpu->arch.vpid)
exec_vmwrite16(VMX_VPID, vcpu->arch.vpid);
/*
* A power-up or a reset invalidates all linear mappings,
* guest-physical mappings, and combined mappings
*/
flush_vpid_global();
/* Set vcpu launched */
vcpu->launched = true;
/* avoid VMCS recycling RSB usage, set IBPB.
* NOTE: this should be done for any time vmcs got switch
* currently, there is no other place to do vmcs switch
* Please add IBPB set for future vmcs switch case(like trusty)
*/
if (ibrs_type == IBRS_RAW)
msr_write(MSR_IA32_PRED_CMD, PRED_SET_IBPB);
#ifdef CONFIG_L1D_FLUSH_VMENTRY_ENABLED
cpu_l1d_flush();
#endif
/* Launch the VM */
status = vmx_vmrun(ctx, VM_LAUNCH, ibrs_type);
/* See if VM launched successfully */
if (status == 0) {
if (is_vcpu_bsp(vcpu)) {
pr_info("VM %d VCPU %hu successfully launched",
vcpu->vm->vm_id, vcpu->vcpu_id);
}
}
} else {
/* This VCPU was already launched, check if the last guest
* instruction needs to be repeated and resume VCPU accordingly
*/
instlen = vcpu->arch.inst_len;
rip = vcpu_get_rip(vcpu);
exec_vmwrite(VMX_GUEST_RIP, ((rip+(uint64_t)instlen) &
0xFFFFFFFFFFFFFFFFUL));
#ifdef CONFIG_L1D_FLUSH_VMENTRY_ENABLED
cpu_l1d_flush();
#endif
/* Resume the VM */
status = vmx_vmrun(ctx, VM_RESUME, ibrs_type);
}
vcpu->reg_cached = 0UL;
cs_attr = exec_vmread32(VMX_GUEST_CS_ATTR);
ia32_efer = vcpu_get_efer(vcpu);
cr0 = vcpu_get_cr0(vcpu);
set_vcpu_mode(vcpu, cs_attr, ia32_efer, cr0);
/* Obtain current VCPU instruction length */
vcpu->arch.inst_len = exec_vmread32(VMX_EXIT_INSTR_LEN);
ctx->guest_cpu_regs.regs.rsp = exec_vmread(VMX_GUEST_RSP);
/* Obtain VM exit reason */
vcpu->arch.exit_reason = exec_vmread32(VMX_EXIT_REASON);
if (status != 0) {
/* refer to 64-ia32 spec section 24.9.1 volume#3 */
if (vcpu->arch.exit_reason & VMX_VMENTRY_FAIL)
pr_fatal("vmentry fail reason=%lx", vcpu->arch.exit_reason);
else
pr_fatal("vmexit fail err_inst=%x", exec_vmread32(VMX_INSTR_ERROR));
ASSERT(status == 0, "vm fail");
}
return status;
}
int32_t shutdown_vcpu(__unused struct acrn_vcpu *vcpu)
{
/* TODO : Implement VCPU shutdown sequence */
return 0;
}
/*
* @pre vcpu != NULL
*/
void offline_vcpu(struct acrn_vcpu *vcpu)
{
vlapic_free(vcpu);
per_cpu(ever_run_vcpu, vcpu->pcpu_id) = NULL;
free_pcpu(vcpu->pcpu_id);
vcpu->state = VCPU_OFFLINE;
}
/* NOTE:
* vcpu should be paused before call this function.
*/
void reset_vcpu(struct acrn_vcpu *vcpu)
{
int32_t i;
struct acrn_vlapic *vlapic;
pr_dbg("vcpu%hu reset", vcpu->vcpu_id);
ASSERT(vcpu->state != VCPU_RUNNING,
"reset vcpu when it's running");
if (vcpu->state == VCPU_INIT)
return;
vcpu->state = VCPU_INIT;
vcpu->launched = false;
vcpu->paused_cnt = 0U;
vcpu->running = 0;
vcpu->arch.nr_sipi = 0;
vcpu->pending_pre_work = 0U;
vcpu->arch.exception_info.exception = VECTOR_INVALID;
vcpu->arch.cur_context = NORMAL_WORLD;
vcpu->arch.irq_window_enabled = 0;
vcpu->arch.inject_event_pending = false;
(void)memset(vcpu->arch.vmcs, 0U, PAGE_SIZE);
for (i = 0; i < NR_WORLD; i++) {
(void)memset(&vcpu->arch.contexts[i], 0U,
sizeof(struct run_context));
}
vcpu->arch.cur_context = NORMAL_WORLD;
vlapic = vcpu_vlapic(vcpu);
vlapic_reset(vlapic);
reset_vcpu_regs(vcpu);
}
void pause_vcpu(struct acrn_vcpu *vcpu, enum vcpu_state new_state)
{
uint16_t pcpu_id = get_cpu_id();
pr_dbg("vcpu%hu paused, new state: %d",
vcpu->vcpu_id, new_state);
get_schedule_lock(vcpu->pcpu_id);
vcpu->prev_state = vcpu->state;
vcpu->state = new_state;
if (atomic_load32(&vcpu->running) == 1U) {
remove_from_cpu_runqueue(&vcpu->sched_obj, vcpu->pcpu_id);
make_reschedule_request(vcpu->pcpu_id);
release_schedule_lock(vcpu->pcpu_id);
if (vcpu->pcpu_id != pcpu_id) {
while (atomic_load32(&vcpu->running) == 1U)
__asm__ __volatile("pause" ::: "memory");
}
} else {
remove_from_cpu_runqueue(&vcpu->sched_obj, vcpu->pcpu_id);
release_schedule_lock(vcpu->pcpu_id);
}
}
void resume_vcpu(struct acrn_vcpu *vcpu)
{
pr_dbg("vcpu%hu resumed", vcpu->vcpu_id);
get_schedule_lock(vcpu->pcpu_id);
vcpu->state = vcpu->prev_state;
if (vcpu->state == VCPU_RUNNING) {
add_to_cpu_runqueue(&vcpu->sched_obj, vcpu->pcpu_id);
make_reschedule_request(vcpu->pcpu_id);
}
release_schedule_lock(vcpu->pcpu_id);
}
void schedule_vcpu(struct acrn_vcpu *vcpu)
{
vcpu->state = VCPU_RUNNING;
pr_dbg("vcpu%hu scheduled", vcpu->vcpu_id);
get_schedule_lock(vcpu->pcpu_id);
add_to_cpu_runqueue(&vcpu->sched_obj, vcpu->pcpu_id);
make_reschedule_request(vcpu->pcpu_id);
release_schedule_lock(vcpu->pcpu_id);
}
/* help function for vcpu create */
int32_t prepare_vcpu(struct acrn_vm *vm, uint16_t pcpu_id)
{
int32_t ret = 0;
struct acrn_vcpu *vcpu = NULL;
ret = create_vcpu(pcpu_id, vm, &vcpu);
if (ret != 0) {
return ret;
}
set_pcpu_used(pcpu_id);
INIT_LIST_HEAD(&vcpu->sched_obj.run_list);
return ret;
}
void request_vcpu_pre_work(struct acrn_vcpu *vcpu, uint16_t pre_work_id)
{
bitmap_set_lock(pre_work_id, &vcpu->pending_pre_work);
}