acrn-hypervisor/hypervisor/bsp/uefi/efi/boot.c
Chaohong guo 951a24cd3d allocate boot related struct right after hypervisor memory
To reduce the call to dynamic memory allocation, the patch tries to
alloate memroy together with hypervisor when hypervisor is being
relocated by efi stub code. The memory allocated will be right at the
end of HV memory. Three structs will be done in this way: 1) boot_ctx,
which saves EFI boot state and is passed to SOS; 2) multiboot_info,
faked multi-boot header for passing boot info to hypervisor;  and 3)
multiboot_mmap, e820 mmap structure.

after this, the EFI stub code (which boot hypervisor) will only have 3
to dynamic memory:
 1. the call for hv binary and the 3 struct;
 2. the call to CPU boot trampoline code;
 3. the call to alloc mmap buf when inquery memory layout from UEFI FW;

Tracked-On:#1260
Signed-off-by: Chaohong Guo <chaohong.guo@intel.com>
Reviewed-by: Jason Chen <jason.cj.chen@intel.com>
Reviewed-by: Anthony Xu <Anthony.Xu@intel.com>
Reviewed-by: Eddie Dong <Eddid.Dong@intel.com>
Acked-by: Gen Zheng <gen.zheng@intel.com>
2018-09-19 14:32:02 +08:00

431 lines
12 KiB
C

/*
* Copyright (c) 2011, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <efi.h>
#include <efilib.h>
#include "efilinux.h"
#include "stdlib.h"
#include "boot.h"
#include "vm0_boot.h"
EFI_SYSTEM_TABLE *sys_table;
EFI_BOOT_SERVICES *boot;
char *cmdline = NULL;
extern const uint64_t guest_entry;
static UINT64 hv_hpa;
static inline void hv_jump(EFI_PHYSICAL_ADDRESS hv_start,
struct multiboot_info *mbi, struct boot_ctx *efi_ctx)
{
hv_func hf;
efi_ctx->rip = (uint64_t)&guest_entry;
/* The 64-bit entry of acrn hypervisor is 0x200 from the start
* address of hv image. But due to there is multiboot header,
* so it has to be added with 0x10.
*
* FIXME: The hardcode value 0x210 should be worked out
* from the link address of cpu_primary_start_64 in acrn.out
*/
hf = (hv_func)(hv_start + 0x210);
asm volatile ("cli");
/* jump to acrn hypervisor */
hf(MULTIBOOT_INFO_MAGIC, mbi);
}
EFI_STATUS construct_mbi(EFI_PHYSICAL_ADDRESS hv_hpa)
{
UINTN map_size, _map_size, map_key;
UINT32 desc_version;
UINTN desc_size;
EFI_MEMORY_DESCRIPTOR *map_buf;
EFI_PHYSICAL_ADDRESS addr;
EFI_STATUS err = EFI_SUCCESS;
struct multiboot_info *mbi;
struct multiboot_mmap *mmap;
struct boot_ctx *efi_ctx;
int i, j;
mbi = MBOOT_INFO_PTR(hv_hpa);
mmap = MBOOT_MMAP_PTR(hv_hpa);
efi_ctx = BOOT_CTX_PTR(hv_hpa);
(void)memset((void *)mbi, 0x0, MBOOT_INFO_SIZE);
(void)memset((void *)mmap, 0x0, MBOOT_MMAP_SIZE);
/* We're just interested in the map's size for now */
map_size = 0;
err = get_memory_map(&map_size, NULL, NULL, NULL, NULL);
if (err != EFI_SUCCESS && err != EFI_BUFFER_TOO_SMALL)
goto out;
again:
_map_size = map_size;
err = emalloc(map_size, 1, &addr);
if (err != EFI_SUCCESS)
goto out;
map_buf = (EFI_MEMORY_DESCRIPTOR *)(UINTN)addr;
/*
* Remember! We've already allocated map_buf with emalloc (and
* 'map_size' contains its size) which means that it should be
* positioned below our allocation for the kernel. Use that
* space for the memory map.
*/
err = get_memory_map(&map_size, map_buf, &map_key,
&desc_size, &desc_version);
if (err != EFI_SUCCESS) {
if (err == EFI_BUFFER_TOO_SMALL) {
/*
* Argh! The buffer that we allocated further
* up wasn't large enough which means we need
* to allocate them again, but this time
* larger. 'map_size' has been updated by the
* call to memory_map().
*/
efree((UINTN)map_buf, _map_size);
goto again;
}
goto out;
}
/*
* Convert the EFI memory map to E820.
*/
for (i = 0, j = 0; i < map_size / desc_size; i++) {
EFI_MEMORY_DESCRIPTOR *d;
unsigned int e820_type = 0;
d = (EFI_MEMORY_DESCRIPTOR *)((unsigned long)map_buf + (i * desc_size));
switch(d->Type) {
case EfiReservedMemoryType:
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiMemoryMappedIO:
case EfiMemoryMappedIOPortSpace:
case EfiPalCode:
e820_type = E820_RESERVED;
break;
case EfiUnusableMemory:
e820_type = E820_UNUSABLE;
break;
case EfiACPIReclaimMemory:
e820_type = E820_ACPI;
break;
case EfiLoaderCode:
case EfiLoaderData:
case EfiBootServicesCode:
case EfiBootServicesData:
case EfiConventionalMemory:
e820_type = E820_RAM;
break;
case EfiACPIMemoryNVS:
e820_type = E820_NVS;
break;
default:
continue;
}
if ((j != 0) && mmap[j-1].mm_type == e820_type &&
(mmap[j-1].mm_base_addr + mmap[j-1].mm_length)
== d->PhysicalStart) {
mmap[j-1].mm_length += d->NumberOfPages << EFI_PAGE_SHIFT;
} else {
mmap[j].mm_base_addr = d->PhysicalStart;
mmap[j].mm_length = d->NumberOfPages << EFI_PAGE_SHIFT;
mmap[j].mm_type = e820_type;
j++;
}
}
/* switch hv memory region(0x20000000 ~ 0x22000000) to
* available RAM in e820 table
*/
mmap[j].mm_base_addr = hv_hpa;
mmap[j].mm_length = HV_RUNTIME_MEM_SIZE;
mmap[j].mm_type = E820_RAM;
j++;
mbi->mi_flags |= MULTIBOOT_INFO_HAS_MMAP | MULTIBOOT_INFO_HAS_CMDLINE;
mbi->mi_mmap_length = j*sizeof(struct multiboot_mmap);
mbi->mi_cmdline = (UINTN)cmdline;
mbi->mi_mmap_addr = (UINTN)mmap;
mbi->mi_flags |= MULTIBOOT_INFO_HAS_DRIVES;
mbi->mi_drives_addr = (UINT32)(UINTN)efi_ctx;
out:
return err;
}
static EFI_STATUS
switch_to_guest_mode(EFI_HANDLE image, EFI_PHYSICAL_ADDRESS hv_hpa)
{
EFI_PHYSICAL_ADDRESS addr;
EFI_STATUS err;
struct multiboot_info *mbi;
struct boot_ctx *efi_ctx;
struct acpi_table_rsdp *rsdp = NULL;
int i;
EFI_CONFIGURATION_TABLE *config_table;
mbi = MBOOT_INFO_PTR(hv_hpa);
efi_ctx = BOOT_CTX_PTR(hv_hpa);
(void)memset((void *)efi_ctx, 0x0, BOOT_CTX_SIZE);
/* reserve secondary memory region for CPU trampoline code */
err = emalloc_reserved_mem(&addr, CONFIG_LOW_RAM_SIZE, MEM_ADDR_1MB);
if (err != EFI_SUCCESS)
goto out;
if (addr < 4096)
Print(L"Warning: CPU trampoline code buf occupied zero-page\n");
efi_ctx->ap_trampoline_buf = (void *)addr;
config_table = sys_table->ConfigurationTable;
for (i = 0; i < sys_table->NumberOfTableEntries; i++) {
EFI_GUID acpi_20_table_guid = ACPI_20_TABLE_GUID;
EFI_GUID acpi_table_guid = ACPI_TABLE_GUID;
if (CompareGuid(&acpi_20_table_guid,
&config_table->VendorGuid) == 0) {
rsdp = config_table->VendorTable;
break;
}
if (CompareGuid(&acpi_table_guid,
&config_table->VendorGuid) == 0)
rsdp = config_table->VendorTable;
config_table++;
}
if (rsdp == NULL) {
Print(L"unable to find RSDP\n");
goto out;
}
efi_ctx->rsdp = rsdp;
/* construct multiboot info and deliver it to hypervisor */
err = construct_mbi(hv_hpa);
if (err != EFI_SUCCESS)
goto out;
asm volatile ("pushf\n\t"
"pop %0\n\t"
: "=r"(efi_ctx->rflags)
: );
asm volatile ("movq %%rax, %0" : "=r"(efi_ctx->gprs.rax));
asm volatile ("movq %%rbx, %0" : "=r"(efi_ctx->gprs.rbx));
asm volatile ("movq %%rcx, %0" : "=r"(efi_ctx->gprs.rcx));
asm volatile ("movq %%rdx, %0" : "=r"(efi_ctx->gprs.rdx));
asm volatile ("movq %%rdi, %0" : "=r"(efi_ctx->gprs.rdi));
asm volatile ("movq %%rsi, %0" : "=r"(efi_ctx->gprs.rsi));
asm volatile ("movq %%rsp, %0" : "=r"(efi_ctx->gprs.rsp));
asm volatile ("movq %%rbp, %0" : "=r"(efi_ctx->gprs.rbp));
asm volatile ("movq %%r8, %0" : "=r"(efi_ctx->gprs.r8));
asm volatile ("movq %%r9, %0" : "=r"(efi_ctx->gprs.r9));
asm volatile ("movq %%r10, %0" : "=r"(efi_ctx->gprs.r10));
asm volatile ("movq %%r11, %0" : "=r"(efi_ctx->gprs.r11));
asm volatile ("movq %%r12, %0" : "=r"(efi_ctx->gprs.r12));
asm volatile ("movq %%r13, %0" : "=r"(efi_ctx->gprs.r13));
asm volatile ("movq %%r14, %0" : "=r"(efi_ctx->gprs.r14));
asm volatile ("movq %%r15, %0" : "=r"(efi_ctx->gprs.r15));
hv_jump(hv_hpa, mbi, efi_ctx);
asm volatile (".global guest_entry\n\t"
"guest_entry:\n\t");
out:
return err;
}
static inline EFI_STATUS isspace(CHAR8 ch)
{
return ((unsigned char)ch <= ' ');
}
/**
* efi_main - The entry point for the OS loader image.
* @image: firmware-allocated handle that identifies the image
* @sys_table: EFI system table
*/
EFI_STATUS
efi_main(EFI_HANDLE image, EFI_SYSTEM_TABLE *_table)
{
WCHAR *error_buf;
EFI_STATUS err;
EFI_LOADED_IMAGE *info;
UINTN sec_addr;
UINTN sec_size;
char *section;
EFI_DEVICE_PATH *path;
INTN i, index;
CHAR16 *bootloader_name = NULL;
CHAR16 bootloader_param[] = L"bootloader=";
EFI_HANDLE bootloader_image;
CHAR16 *options = NULL;
UINT32 options_size = 0;
CHAR16 *cmdline16, *n;
InitializeLib(image, _table);
sys_table = _table;
boot = sys_table->BootServices;
if (CheckCrc(sys_table->Hdr.HeaderSize, &sys_table->Hdr) != TRUE)
return EFI_LOAD_ERROR;
err = handle_protocol(image, &LoadedImageProtocol, (void **)&info);
if (err != EFI_SUCCESS)
goto failed;
/* get the options */
options = info->LoadOptions;
options_size = info->LoadOptionsSize;
/* convert the options to cmdline */
if (options_size > 0)
cmdline = ch16_2_ch8(options);
/* First check if we were given a bootloader name
* E.g.: "bootloader=\EFI\org.clearlinux\bootloaderx64.efi"
*/
cmdline16 = StrDuplicate(options);
bootloader_name = strstr_16(cmdline16, bootloader_param);
if (bootloader_name) {
bootloader_name = bootloader_name + StrLen(bootloader_param);
n = bootloader_name;
i = 0;
while (*n && !isspace((CHAR8)*n) && (*n < 0xff)) {
n++; i++;
}
*n++ = '\0';
} else {
/*
* If we reach this point, it means we did not receive a specific
* bootloader name to be used. Fall back to the default bootloader
* as specified in config.h
*/
bootloader_name = ch8_2_ch16(CONFIG_UEFI_OS_LOADER_NAME);
}
section = ".hv";
err = get_pe_section(info->ImageBase, section, &sec_addr, &sec_size);
if (EFI_ERROR(err)) {
Print(L"Unable to locate section of ACRNHV %r ", err);
goto failed;
}
/* without relocateion enabled, hypervisor binary need to reside in
* fixed memory address starting from CONFIG_RAM_START, make a call
* to emalloc_fixed_addr for that case. With CONFIG_RELOC enabled,
* hypervisor is able to do relocation, the only requirement is that
* it need to reside in memory below 4GB, call emalloc_reserved_mem()
* instead.
*/
#ifdef CONFIG_RELOC
err = emalloc_reserved_mem(&hv_hpa, HV_RUNTIME_MEM_SIZE, MEM_ADDR_4GB);
#else
err = emalloc_fixed_addr(&hv_hpa, HV_RUNTIME_MEM_SIZE, CONFIG_RAM_START);
#endif
if (err != EFI_SUCCESS)
goto failed;
memcpy((char *)hv_hpa, info->ImageBase + sec_addr, sec_size);
/* load hypervisor and begin to run on it */
err = switch_to_guest_mode(image, hv_hpa);
if (err != EFI_SUCCESS)
goto failed;
/* load and start the default bootloader */
path = FileDevicePath(info->DeviceHandle, bootloader_name);
if (!path)
goto free_args;
FreePool(bootloader_name);
err = uefi_call_wrapper(boot->LoadImage, 6, FALSE, image,
path, NULL, 0, &bootloader_image);
if (EFI_ERROR(err)) {
uefi_call_wrapper(boot->Stall, 1, 3 * 1000 * 1000);
goto failed;
}
err = uefi_call_wrapper(boot->StartImage, 3, bootloader_image,
NULL, NULL);
if (EFI_ERROR(err)) {
uefi_call_wrapper(boot->Stall, 1, 3 * 1000 * 1000);
goto failed;
}
uefi_call_wrapper(boot->UnloadImage, 1, bootloader_image);
return EFI_SUCCESS;
free_args:
FreePool(bootloader_name);
failed:
/*
* We need to be careful not to trash 'err' here. If we fail
* to allocate enough memory to hold the error string fallback
* to returning 'err'.
*/
if (allocate_pool(EfiLoaderData, ERROR_STRING_LENGTH,
(void **)&error_buf) != EFI_SUCCESS) {
Print(L"Couldn't allocate pages for error string\n");
return err;
}
StatusToString(error_buf, err);
Print(L": %s\n", error_buf);
/* If we don't wait for user input, (s)he will not see the error message */
uefi_call_wrapper(sys_table->ConOut->OutputString, 2, sys_table->ConOut, \
L"\r\n\r\n\r\nHit any key to exit\r\n");
uefi_call_wrapper(sys_table->BootServices->WaitForEvent, 3, 1, \
&sys_table->ConIn->WaitForKey, &index);
return exit(image, err, ERROR_STRING_LENGTH, error_buf);
}