acrn-hypervisor/hypervisor/arch/x86/cpu.c
Jason Chen CJ 2d469a5e5f modularization: hypervisor initilization component
hypervisor initilization component triggered by boot component,
and it calls different components initilization functions from
the highest layer.

this patch added init.c and move reorged cpu init functions into
it, keep hardware management functions in cpu.c but move other
components' init function into init.c.

the hypervisor initilization components will call:
- init_cpu_pre
- init_cpu_post
- init_bsp
- init_debug_pre
- init_debug_post
- init_guest
- init_passthru
- enter_guest_mode

the hypervisor initilization component include files:
arch/x86/init.c
include/arch/x86/init.h

this component is higest layer, so there is no reverse dependencies for it.

v2:
- separate into 2 patches, 1 for reorg, 1 for pure move.

Tracked-On: #1842
Signed-off-by: Jason Chen CJ <jason.cj.chen@intel.com>
Acked-by: Xu, Anthony <anthony.xu@intel.com>
2018-12-14 08:56:15 +08:00

810 lines
19 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <acpi.h>
#include <schedule.h>
#include <version.h>
#include <trampoline.h>
#include <e820.h>
spinlock_t trampoline_spinlock = {
.head = 0U,
.tail = 0U
};
struct per_cpu_region per_cpu_data[CONFIG_MAX_PCPU_NUM] __aligned(PAGE_SIZE);
uint16_t phys_cpu_num = 0U;
static uint64_t pcpu_sync = 0UL;
static uint16_t up_count = 0U;
static uint64_t startup_paddr = 0UL;
/* physical cpu active bitmap, support up to 64 cpus */
uint64_t pcpu_active_bitmap = 0UL;
static bool skip_l1dfl_vmentry;
static uint64_t x86_arch_capabilities;
/* TODO: add more capability per requirement */
/* APICv features */
#define VAPIC_FEATURE_VIRT_ACCESS (1U << 0U)
#define VAPIC_FEATURE_VIRT_REG (1U << 1U)
#define VAPIC_FEATURE_INTR_DELIVERY (1U << 2U)
#define VAPIC_FEATURE_TPR_SHADOW (1U << 3U)
#define VAPIC_FEATURE_POST_INTR (1U << 4U)
#define VAPIC_FEATURE_VX2APIC_MODE (1U << 5U)
struct cpu_capability {
uint8_t apicv_features;
uint8_t ept_features;
};
static struct cpu_capability cpu_caps;
struct cpuinfo_x86 boot_cpu_data;
static void cpu_cap_detect(void);
static void cpu_xsave_init(void);
static void set_current_cpu_id(uint16_t pcpu_id);
static void print_hv_banner(void);
static uint16_t get_cpu_id_from_lapic_id(uint32_t lapic_id);
int32_t ibrs_type;
static uint64_t start_tsc __attribute__((__section__(".bss_noinit")));
bool cpu_has_cap(uint32_t bit)
{
uint32_t feat_idx = bit >> 5U;
uint32_t feat_bit = bit & 0x1fU;
bool ret;
if (feat_idx >= FEATURE_WORDS) {
ret = false;
} else {
ret = ((boot_cpu_data.cpuid_leaves[feat_idx] & (1U << feat_bit)) != 0U);
}
return ret;
}
static inline bool get_monitor_cap(void)
{
if (cpu_has_cap(X86_FEATURE_MONITOR)) {
/* don't use monitor for CPU (family: 0x6 model: 0x5c)
* in hypervisor, but still expose it to the guests and
* let them handle it correctly
*/
if ((boot_cpu_data.family != 0x6U) || (boot_cpu_data.model != 0x5cU)) {
return true;
}
}
return false;
}
static uint64_t get_address_mask(uint8_t limit)
{
return ((1UL << limit) - 1UL) & PAGE_MASK;
}
static void get_cpu_capabilities(void)
{
uint32_t eax, unused;
uint32_t family, model;
cpuid(CPUID_VENDORSTRING,
&boot_cpu_data.cpuid_level,
&unused, &unused, &unused);
cpuid(CPUID_FEATURES, &eax, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_1_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_1_EDX]);
family = (eax >> 8U) & 0xffU;
if (family == 0xFU) {
family += (eax >> 20U) & 0xffU;
}
boot_cpu_data.family = (uint8_t)family;
model = (eax >> 4U) & 0xfU;
if (family >= 0x06U) {
model += ((eax >> 16U) & 0xfU) << 4U;
}
boot_cpu_data.model = (uint8_t)model;
cpuid(CPUID_EXTEND_FEATURE, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_7_0_EBX],
&boot_cpu_data.cpuid_leaves[FEAT_7_0_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_7_0_EDX]);
cpuid(CPUID_MAX_EXTENDED_FUNCTION,
&boot_cpu_data.extended_cpuid_level,
&unused, &unused, &unused);
if (boot_cpu_data.extended_cpuid_level >= CPUID_EXTEND_FUNCTION_1) {
cpuid(CPUID_EXTEND_FUNCTION_1, &unused, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_8000_0001_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_8000_0001_EDX]);
}
if (boot_cpu_data.extended_cpuid_level >= CPUID_EXTEND_ADDRESS_SIZE) {
cpuid(CPUID_EXTEND_ADDRESS_SIZE, &eax,
&boot_cpu_data.cpuid_leaves[FEAT_8000_0008_EBX],
&unused, &unused);
/* EAX bits 07-00: #Physical Address Bits
* bits 15-08: #Linear Address Bits
*/
boot_cpu_data.virt_bits = (uint8_t)((eax >> 8U) & 0xffU);
boot_cpu_data.phys_bits = (uint8_t)(eax & 0xffU);
boot_cpu_data.physical_address_mask =
get_address_mask(boot_cpu_data.phys_bits);
}
/* For speculation defence.
* The default way is to set IBRS at vmexit and then do IBPB at vcpu
* context switch(ibrs_type == IBRS_RAW).
* Now provide an optimized way (ibrs_type == IBRS_OPT) which set
* STIBP and do IBPB at vmexit,since having STIBP always set has less
* impact than having IBRS always set. Also since IBPB is already done
* at vmexit, it is no necessary to do so at vcpu context switch then.
*/
ibrs_type = IBRS_NONE;
/* Currently for APL, if we enabled retpoline, then IBRS should not
* take effect
* TODO: add IA32_ARCH_CAPABILITIES[1] check, if this bit is set, IBRS
* should be set all the time instead of relying on retpoline
*/
#ifndef CONFIG_RETPOLINE
if (cpu_has_cap(X86_FEATURE_IBRS_IBPB)) {
ibrs_type = IBRS_RAW;
if (cpu_has_cap(X86_FEATURE_STIBP)) {
ibrs_type = IBRS_OPT;
}
}
#endif
}
/*
* basic hardware capability check
* we should supplement which feature/capability we must support
* here later.
*/
static int32_t hardware_detect_support(void)
{
int32_t ret;
/* Long Mode (x86-64, 64-bit support) */
if (!cpu_has_cap(X86_FEATURE_LM)) {
pr_fatal("%s, LM not supported\n", __func__);
return -ENODEV;
}
if ((boot_cpu_data.phys_bits == 0U) ||
(boot_cpu_data.virt_bits == 0U)) {
pr_fatal("%s, can't detect Linear/Physical Address size\n",
__func__);
return -ENODEV;
}
/* lapic TSC deadline timer */
if (!cpu_has_cap(X86_FEATURE_TSC_DEADLINE)) {
pr_fatal("%s, TSC deadline not supported\n", __func__);
return -ENODEV;
}
/* Execute Disable */
if (!cpu_has_cap(X86_FEATURE_NX)) {
pr_fatal("%s, NX not supported\n", __func__);
return -ENODEV;
}
/* Supervisor-Mode Execution Prevention */
if (!cpu_has_cap(X86_FEATURE_SMEP)) {
pr_fatal("%s, SMEP not supported\n", __func__);
return -ENODEV;
}
/* Supervisor-Mode Access Prevention */
if (!cpu_has_cap(X86_FEATURE_SMAP)) {
pr_fatal("%s, SMAP not supported\n", __func__);
return -ENODEV;
}
if (!cpu_has_cap(X86_FEATURE_MTRR)) {
pr_fatal("%s, MTRR not supported\n", __func__);
return -ENODEV;
}
if (!cpu_has_cap(X86_FEATURE_PAGE1GB)) {
pr_fatal("%s, not support 1GB page\n", __func__);
return -ENODEV;
}
if (!cpu_has_cap(X86_FEATURE_VMX)) {
pr_fatal("%s, vmx not supported\n", __func__);
return -ENODEV;
}
if (!cpu_has_vmx_unrestricted_guest_cap()) {
pr_fatal("%s, unrestricted guest not supported\n", __func__);
return -ENODEV;
}
if (!is_ept_supported()) {
pr_fatal("%s, EPT not supported\n", __func__);
return -ENODEV;
}
if (boot_cpu_data.cpuid_level < 0x15U) {
pr_fatal("%s, required CPU feature not supported\n", __func__);
return -ENODEV;
}
if (is_vmx_disabled()) {
pr_fatal("%s, VMX can not be enabled\n", __func__);
return -ENODEV;
}
if (phys_cpu_num > CONFIG_MAX_PCPU_NUM) {
pr_fatal("%s, pcpu number(%d) is out of range\n", __func__, phys_cpu_num);
return -ENODEV;
}
ret = check_vmx_mmu_cap();
if (ret != 0) {
return ret;
}
pr_acrnlog("hardware support HV");
return 0;
}
static void init_percpu_lapic_id(void)
{
uint16_t i;
uint16_t pcpu_num = 0U;
uint32_t lapic_id_array[CONFIG_MAX_PCPU_NUM];
/* Save all lapic_id detected via parse_mdt in lapic_id_array */
pcpu_num = parse_madt(lapic_id_array);
if (pcpu_num == 0U) {
/* failed to get the physcial cpu number */
ASSERT(false);
}
phys_cpu_num = pcpu_num;
for (i = 0U; (i < pcpu_num) && (i < CONFIG_MAX_PCPU_NUM); i++) {
per_cpu(lapic_id, i) = lapic_id_array[i];
}
}
static void cpu_set_current_state(uint16_t pcpu_id, enum pcpu_boot_state state)
{
/* Check if state is initializing */
if (state == PCPU_STATE_INITIALIZING) {
/* Increment CPU up count */
atomic_inc16(&up_count);
/* Save this CPU's logical ID to the TSC AUX MSR */
set_current_cpu_id(pcpu_id);
}
/* If cpu is dead, decrement CPU up count */
if (state == PCPU_STATE_DEAD) {
atomic_dec16(&up_count);
}
/* Set state for the specified CPU */
per_cpu(boot_state, pcpu_id) = state;
}
#ifdef STACK_PROTECTOR
static uint64_t get_random_value(void)
{
uint64_t random = 0UL;
asm volatile ("1: rdrand %%rax\n"
"jnc 1b\n"
"mov %%rax, %0\n"
: "=r"(random)
:
:"%rax");
return random;
}
static void set_fs_base(void)
{
struct stack_canary *psc = &get_cpu_var(stk_canary);
psc->canary = get_random_value();
msr_write(MSR_IA32_FS_BASE, (uint64_t)psc);
}
#endif
static void get_cpu_name(void)
{
cpuid(CPUID_EXTEND_FUNCTION_2,
(uint32_t *)(boot_cpu_data.model_name),
(uint32_t *)(&boot_cpu_data.model_name[4]),
(uint32_t *)(&boot_cpu_data.model_name[8]),
(uint32_t *)(&boot_cpu_data.model_name[12]));
cpuid(CPUID_EXTEND_FUNCTION_3,
(uint32_t *)(&boot_cpu_data.model_name[16]),
(uint32_t *)(&boot_cpu_data.model_name[20]),
(uint32_t *)(&boot_cpu_data.model_name[24]),
(uint32_t *)(&boot_cpu_data.model_name[28]));
cpuid(CPUID_EXTEND_FUNCTION_4,
(uint32_t *)(&boot_cpu_data.model_name[32]),
(uint32_t *)(&boot_cpu_data.model_name[36]),
(uint32_t *)(&boot_cpu_data.model_name[40]),
(uint32_t *)(&boot_cpu_data.model_name[44]));
boot_cpu_data.model_name[48] = '\0';
}
static bool check_cpu_security_config(void)
{
if (cpu_has_cap(X86_FEATURE_ARCH_CAP)) {
x86_arch_capabilities = msr_read(MSR_IA32_ARCH_CAPABILITIES);
skip_l1dfl_vmentry = ((x86_arch_capabilities
& IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) != 0UL);
} else {
return false;
}
if ((!cpu_has_cap(X86_FEATURE_L1D_FLUSH)) && (!skip_l1dfl_vmentry)) {
return false;
}
if (!cpu_has_cap(X86_FEATURE_IBRS_IBPB) &&
!cpu_has_cap(X86_FEATURE_STIBP)) {
return false;
}
return true;
}
void init_cpu_pre(uint16_t pcpu_id)
{
if (pcpu_id == BOOT_CPU_ID) {
start_tsc = rdtsc();
/* Clear BSS */
(void)memset(&ld_bss_start, 0U,
(size_t)(&ld_bss_end - &ld_bss_start));
/* Get CPU capabilities thru CPUID, including the physical address bit
* limit which is required for initializing paging.
*/
get_cpu_capabilities();
get_cpu_name();
load_cpu_state_data();
/* Initialize the hypervisor paging */
init_e820();
init_paging();
if (!cpu_has_cap(X86_FEATURE_X2APIC)) {
panic("x2APIC is not present!");
}
cpu_cap_detect();
early_init_lapic();
init_percpu_lapic_id();
} else {
/* Switch this CPU to use the same page tables set-up by the
* primary/boot CPU
*/
enable_paging();
early_init_lapic();
pcpu_id = get_cpu_id_from_lapic_id(get_cur_lapic_id());
}
bitmap_set_nolock(pcpu_id, &pcpu_active_bitmap);
/* Set state for this CPU to initializing */
cpu_set_current_state(pcpu_id, PCPU_STATE_INITIALIZING);
}
void init_cpu_post(uint16_t pcpu_id)
{
#ifdef STACK_PROTECTOR
set_fs_base();
#endif
load_gdtr_and_tr();
enable_smep();
/* Make sure rdtsc is enabled */
check_tsc();
cpu_xsave_init();
if (pcpu_id == BOOT_CPU_ID) {
/* Print Hypervisor Banner */
print_hv_banner();
/* Calibrate TSC Frequency */
calibrate_tsc();
pr_acrnlog("HV version %s-%s-%s %s (daily tag:%s) build by %s, start time %lluus",
HV_FULL_VERSION,
HV_BUILD_TIME, HV_BUILD_VERSION, HV_BUILD_TYPE,
HV_DAILY_TAG,
HV_BUILD_USER, ticks_to_us(start_tsc));
pr_acrnlog("API version %u.%u",
HV_API_MAJOR_VERSION, HV_API_MINOR_VERSION);
pr_acrnlog("Detect processor: %s", boot_cpu_data.model_name);
pr_dbg("Core %hu is up", BOOT_CPU_ID);
if (hardware_detect_support() != 0) {
panic("hardware not support!");
}
/* Warn for security feature not ready */
if (!check_cpu_security_config()) {
pr_fatal("SECURITY WARNING!!!!!!");
pr_fatal("Please apply the latest CPU uCode patch!");
}
/* Initialize interrupts */
interrupt_init(BOOT_CPU_ID);
timer_init();
setup_notification();
setup_posted_intr_notification();
/* Start all secondary cores */
startup_paddr = prepare_trampoline();
start_cpus();
ASSERT(get_cpu_id() == BOOT_CPU_ID, "");
} else {
pr_dbg("Core %hu is up", pcpu_id);
/* Initialize secondary processor interrupts. */
interrupt_init(pcpu_id);
timer_init();
/* Wait for boot processor to signal all secondary cores to continue */
wait_sync_change(&pcpu_sync, 0UL);
}
}
static uint16_t get_cpu_id_from_lapic_id(uint32_t lapic_id)
{
uint16_t i;
for (i = 0U; (i < phys_cpu_num) && (i < CONFIG_MAX_PCPU_NUM); i++) {
if (per_cpu(lapic_id, i) == lapic_id) {
return i;
}
}
return INVALID_CPU_ID;
}
/*
* Start all secondary CPUs.
*/
void start_cpus(void)
{
uint32_t timeout;
uint16_t expected_up;
/* secondary cpu start up will wait for pcpu_sync -> 0UL */
atomic_store64(&pcpu_sync, 1UL);
/* Set flag showing number of CPUs expected to be up to all
* cpus
*/
expected_up = phys_cpu_num;
/* Broadcast IPIs to all other CPUs,
* In this case, INTR_CPU_STARTUP_ALL_EX_SELF decides broadcasting
* IPIs, INVALID_CPU_ID is parameter value to destination pcpu_id.
*/
send_startup_ipi(INTR_CPU_STARTUP_ALL_EX_SELF,
INVALID_CPU_ID, startup_paddr);
/* Wait until global count is equal to expected CPU up count or
* configured time-out has expired
*/
timeout = (uint32_t)CONFIG_CPU_UP_TIMEOUT * 1000U;
while ((atomic_load16(&up_count) != expected_up) && (timeout != 0U)) {
/* Delay 10us */
udelay(10U);
/* Decrement timeout value */
timeout -= 10U;
}
/* Check to see if all expected CPUs are actually up */
if (atomic_load16(&up_count) != expected_up) {
/* Print error */
pr_fatal("Secondary CPUs failed to come up");
/* Error condition - loop endlessly for now */
do {
} while (1);
}
/* Trigger event to allow secondary CPUs to continue */
atomic_store64(&pcpu_sync, 0UL);
}
void stop_cpus(void)
{
uint16_t pcpu_id, expected_up;
uint32_t timeout;
timeout = (uint32_t)CONFIG_CPU_UP_TIMEOUT * 1000U;
for (pcpu_id = 0U; pcpu_id < phys_cpu_num; pcpu_id++) {
if (get_cpu_id() == pcpu_id) { /* avoid offline itself */
continue;
}
make_pcpu_offline(pcpu_id);
}
expected_up = 1U;
while ((atomic_load16(&up_count) != expected_up) && (timeout != 0U)) {
/* Delay 10us */
udelay(10U);
/* Decrement timeout value */
timeout -= 10U;
}
if (atomic_load16(&up_count) != expected_up) {
pr_fatal("Can't make all APs offline");
/* if partial APs is down, it's not easy to recover
* per our current implementation (need make up dead
* APs one by one), just print error mesage and dead
* loop here.
*
* FIXME:
* We need to refine here to handle the AP offline
* failure for release/debug version. Ideally, we should
* define how to handle general unrecoverable error and
* follow it here.
*/
do {
} while (1);
}
}
void cpu_do_idle(void)
{
__asm __volatile("pause" ::: "memory");
}
void cpu_dead(uint16_t pcpu_id)
{
/* For debug purposes, using a stack variable in the while loop enables
* us to modify the value using a JTAG probe and resume if needed.
*/
int32_t halt = 1;
if (bitmap_test_and_clear_lock(pcpu_id, &pcpu_active_bitmap)) {
/* clean up native stuff */
vmx_off(pcpu_id);
cache_flush_invalidate_all();
/* Set state to show CPU is dead */
cpu_set_current_state(pcpu_id, PCPU_STATE_DEAD);
/* Halt the CPU */
do {
hlt_cpu();
} while (halt != 0);
} else {
pr_err("pcpu%hu already dead", pcpu_id);
}
}
static void set_current_cpu_id(uint16_t pcpu_id)
{
/* Write TSC AUX register */
msr_write(MSR_IA32_TSC_AUX, (uint64_t) pcpu_id);
}
static void print_hv_banner(void)
{
const char *boot_msg = "ACRN Hypervisor\n\r";
/* Print the boot message */
printf(boot_msg);
}
/* wait until *sync == wake_sync */
void wait_sync_change(uint64_t *sync, uint64_t wake_sync)
{
if (get_monitor_cap()) {
/* Wait for the event to be set using monitor/mwait */
asm volatile ("1: cmpq %%rbx,(%%rax)\n"
" je 2f\n"
" monitor\n"
" mwait\n"
" jmp 1b\n"
"2:\n"
:
: "a" (sync), "d"(0), "c"(0),
"b"(wake_sync)
: "cc");
} else {
/* Wait for the event to be set using pause */
asm volatile ("1: cmpq %%rbx,(%%rax)\n"
" je 2f\n"
" pause\n"
" jmp 1b\n"
"2:\n"
:
: "a" (sync), "d"(0), "c"(0),
"b"(wake_sync)
: "cc");
}
}
/*check allowed ONEs setting in vmx control*/
static bool is_ctrl_setting_allowed(uint64_t msr_val, uint32_t ctrl)
{
/*
* Intel SDM Appendix A.3
* - bitX in ctrl can be set 1
* only if bit 32+X in msr_val is 1
*/
return ((((uint32_t)(msr_val >> 32UL)) & ctrl) == ctrl);
}
static void ept_cap_detect(void)
{
uint64_t msr_val;
cpu_caps.ept_features = 0U;
/* Read primary processor based VM control. */
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS);
/*
* According to SDM A.3.2 Primary Processor-Based VM-Execution Controls:
* The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed
* settings of most of the primary processor-based VM-execution controls
* (see Section 24.6.2):
* Bits 63:32 indicate the allowed 1-settings of these controls.
* VM entry allows control X to be 1 if bit 32+X in the MSR is set to 1;
* if bit 32+X in the MSR is cleared to 0, VM entry fails if control X
* is 1.
*/
msr_val = msr_val >> 32U;
/* Check if secondary processor based VM control is available. */
if ((msr_val & VMX_PROCBASED_CTLS_SECONDARY) != 0UL) {
/* Read secondary processor based VM control. */
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2);
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_EPT)) {
cpu_caps.ept_features = 1U;
}
}
}
static void apicv_cap_detect(void)
{
uint8_t features;
uint64_t msr_val;
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS);
if (!is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS_TPR_SHADOW)) {
pr_fatal("APICv: No APIC TPR virtualization support.");
return;
}
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2);
if (!is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VAPIC)) {
pr_fatal("APICv: No APIC-access virtualization support.");
return;
}
if (!is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VAPIC_REGS)) {
pr_fatal("APICv: No APIC-register virtualization support.");
return;
}
features = (VAPIC_FEATURE_TPR_SHADOW
| VAPIC_FEATURE_VIRT_ACCESS
| VAPIC_FEATURE_VIRT_REG);
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VX2APIC)) {
features |= VAPIC_FEATURE_VX2APIC_MODE;
}
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VIRQ)) {
features |= VAPIC_FEATURE_INTR_DELIVERY;
msr_val = msr_read(MSR_IA32_VMX_PINBASED_CTLS);
if (is_ctrl_setting_allowed(msr_val,
VMX_PINBASED_CTLS_POST_IRQ)) {
features |= VAPIC_FEATURE_POST_INTR;
}
}
cpu_caps.apicv_features = features;
}
static void cpu_cap_detect(void)
{
apicv_cap_detect();
ept_cap_detect();
}
bool is_ept_supported(void)
{
return (cpu_caps.ept_features != 0U);
}
bool is_apicv_reg_virtualization_supported(void)
{
return ((cpu_caps.apicv_features & VAPIC_FEATURE_VIRT_REG) != 0U);
}
bool is_apicv_intr_delivery_supported(void)
{
return ((cpu_caps.apicv_features & VAPIC_FEATURE_INTR_DELIVERY) != 0U);
}
bool is_apicv_posted_intr_supported(void)
{
return ((cpu_caps.apicv_features & VAPIC_FEATURE_POST_INTR) != 0U);
}
static void cpu_xsave_init(void)
{
uint64_t val64;
if (cpu_has_cap(X86_FEATURE_XSAVE)) {
CPU_CR_READ(cr4, &val64);
val64 |= CR4_OSXSAVE;
CPU_CR_WRITE(cr4, val64);
if (get_cpu_id() == BOOT_CPU_ID) {
uint32_t ecx, unused;
cpuid(CPUID_FEATURES, &unused, &unused, &ecx, &unused);
/* if set, update it */
if ((ecx & CPUID_ECX_OSXSAVE) != 0U) {
boot_cpu_data.cpuid_leaves[FEAT_1_ECX] |=
CPUID_ECX_OSXSAVE;
}
}
}
}
void cpu_l1d_flush(void)
{
/*
* 'skip_l1dfl_vmentry' will be true on platform that
* is not affected by L1TF.
*
*/
if (!skip_l1dfl_vmentry) {
if (cpu_has_cap(X86_FEATURE_L1D_FLUSH)) {
msr_write(MSR_IA32_FLUSH_CMD, IA32_L1D_FLUSH);
}
}
}