acrn-hypervisor/hypervisor/arch/x86/guest/vlapic.c
Xiangyang Wu c477211d4e HV:treewide:rename struct key_info, pir_desc, map_params
For data structure types "struct key_info, struct pir_desc,
struct map_params", its name is identical with variable name
in the same scope. This MISRA C  violation is detected by
static analysis tool.
Naming convention rule:If the data structure type is used by only one
module and its name meaning is simplistic, its name needs prefix
shorten module name.

The following udpates are made:
struct key_info-->struct trusty_key_info
struct pir_desc-->struct vlapic_pir_desc
struct map_params-->struct mem_map_params

Signed-off-by: Xiangyang Wu <xiangyang.wu@linux.intel.com>
Reviewed-by: Junjie Mao <junjie.mao@intel.com>
2018-07-30 10:18:39 +08:00

2510 lines
56 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* Copyright (c) 2017 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#define pr_prefix "vlapic: "
#include <hypervisor.h>
#include "instr_emul_wrapper.h"
#include "instr_emul.h"
#include "vlapic_priv.h"
#include "vlapic.h"
#define VLAPIC_VERBOS 0
#define PRIO(x) ((x) >> 4)
#define VLAPIC_VERSION (16U)
#define APICBASE_RESERVED 0x000002ffU
#define APICBASE_BSP 0x00000100U
#define APICBASE_X2APIC 0x00000400U
#define APICBASE_ENABLED 0x00000800U
#define ACRN_DBG_LAPIC 6U
#if VLAPIC_VERBOS
static inline void vlapic_dump_irr(struct acrn_vlapic *vlapic, char *msg)
{
uint32_t i;
struct lapic_reg *irrptr = &(vlapic)->apic_page->irr[0];
for (i = 0U; i < 8U; i++)
dev_dbg(ACRN_DBG_LAPIC, "%s irr%u 0x%08x",
msg, i, irrptr[i].val);
}
static inline void vlapic_dump_isr(struct acrn_vlapic *vlapic, char *msg)
{
uint32_t i;
struct lapic_reg *isrptr = &(vlapic)->apic_page->isr[0];
for (i = 0U; i < 8U; i++) {
dev_dbg(ACRN_DBG_LAPIC, "%s isr%u 0x%08x",
msg, i, isrptr[0].val);
}
}
#else
#define vlapic_dump_irr(vlapic, msg)
#define vlapic_dump_isr(vlapic, msg)
#endif
/*APIC-v APIC-access address */
static void *apicv_apic_access_addr;
static int
apicv_set_intr_ready(struct acrn_vlapic *vlapic, uint32_t vector, bool level);
static int
apicv_pending_intr(struct acrn_vlapic *vlapic, uint32_t *vecptr);
static void
apicv_set_tmr(struct acrn_vlapic *vlapic, uint32_t vector, bool level);
static void
apicv_batch_set_tmr(struct acrn_vlapic *vlapic);
/*
* Post an interrupt to the vcpu running on 'hostcpu'. This will use a
* hardware assist if available (e.g. Posted Interrupt) or fall back to
* sending an 'ipinum' to interrupt the 'hostcpu'.
*/
static void vlapic_set_error(struct acrn_vlapic *vlapic, uint32_t mask);
static int vlapic_timer_expired(void *data);
static struct acrn_vlapic *
vm_lapic_from_vcpu_id(struct vm *vm, uint16_t vcpu_id)
{
struct vcpu *vcpu;
vcpu = vcpu_from_vid(vm, vcpu_id);
ASSERT(vcpu != NULL, "vm%d, vcpu%hu", vm->attr.id, vcpu_id);
return vcpu->arch_vcpu.vlapic;
}
struct acrn_vlapic *
vm_lapic_from_pcpuid(struct vm *vm, uint16_t pcpu_id)
{
struct vcpu *vcpu;
vcpu = vcpu_from_pid(vm, pcpu_id);
ASSERT(vcpu != NULL, "vm%d, pcpu%hu", vm->attr.id, pcpu_id);
return vcpu->arch_vcpu.vlapic;
}
static uint16_t vm_apicid2vcpu_id(struct vm *vm, uint8_t lapicid)
{
uint16_t i;
struct vcpu *vcpu;
foreach_vcpu(i, vm, vcpu) {
struct acrn_vlapic *vlapic = vcpu->arch_vcpu.vlapic;
if (vlapic_get_apicid(vlapic) == lapicid) {
return vcpu->vcpu_id;
}
}
pr_err("%s: bad lapicid %hhu", __func__, lapicid);
return phys_cpu_num;
}
static uint64_t
vm_active_cpus(struct vm *vm)
{
uint64_t dmask = 0UL;
uint16_t i;
struct vcpu *vcpu;
foreach_vcpu(i, vm, vcpu) {
bitmap_set_lock(vcpu->vcpu_id, &dmask);
}
return dmask;
}
uint32_t
vlapic_get_id(struct acrn_vlapic *vlapic)
{
uint32_t id = vlapic->apic_page->id;
return id;
}
uint8_t
vlapic_get_apicid(struct acrn_vlapic *vlapic)
{
uint32_t apicid = vlapic->apic_page->id >> APIC_ID_SHIFT;
return (uint8_t)apicid;
}
static inline uint32_t
vlapic_build_id(struct acrn_vlapic *vlapic)
{
struct vcpu *vcpu = vlapic->vcpu;
uint16_t id;
if (is_vm0(vcpu->vm)) {
/* Get APIC ID sequence format from cpu_storage */
id = per_cpu(lapic_id, vcpu->vcpu_id);
} else {
id = vcpu->vcpu_id;
}
dev_dbg(ACRN_DBG_LAPIC, "vlapic APIC PAGE ID : 0x%08x",
(id << APIC_ID_SHIFT));
return (id << APIC_ID_SHIFT);
}
static void
vlapic_dfr_write_handler(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic;
lapic = vlapic->apic_page;
lapic->dfr &= APIC_DFR_MODEL_MASK;
lapic->dfr |= APIC_DFR_RESERVED;
if ((lapic->dfr & APIC_DFR_MODEL_MASK) == APIC_DFR_MODEL_FLAT) {
dev_dbg(ACRN_DBG_LAPIC, "vlapic DFR in Flat Model");
} else if ((lapic->dfr & APIC_DFR_MODEL_MASK) == APIC_DFR_MODEL_CLUSTER) {
dev_dbg(ACRN_DBG_LAPIC, "vlapic DFR in Cluster Model");
} else {
dev_dbg(ACRN_DBG_LAPIC, "DFR in Unknown Model %#x", lapic->dfr);
}
}
static void
vlapic_ldr_write_handler(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic;
lapic = vlapic->apic_page;
lapic->ldr &= ~APIC_LDR_RESERVED;
dev_dbg(ACRN_DBG_LAPIC, "vlapic LDR set to %#x", lapic->ldr);
}
static void
vlapic_id_write_handler(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic;
/*
* We don't allow the ID register to be modified so reset it back to
* its default value.
*/
lapic = vlapic->apic_page;
lapic->id = vlapic_get_id(vlapic);
}
static inline uint32_t
vlapic_timer_divisor_shift(uint32_t dcr)
{
uint32_t val;
val = ((dcr & 0x3U) | ((dcr & 0x8U) >> 1U));
return ((val + 1U) & 0x7U);
}
static inline bool
vlapic_lvtt_oneshot(struct acrn_vlapic *vlapic)
{
return ((vlapic->apic_page->lvt[APIC_LVT_TIMER].val & APIC_LVTT_TM)
== APIC_LVTT_TM_ONE_SHOT);
}
static inline bool
vlapic_lvtt_period(struct acrn_vlapic *vlapic)
{
return ((vlapic->apic_page->lvt[APIC_LVT_TIMER].val & APIC_LVTT_TM)
== APIC_LVTT_TM_PERIODIC);
}
static inline bool
vlapic_lvtt_tsc_deadline(struct acrn_vlapic *vlapic)
{
return ((vlapic->apic_page->lvt[APIC_LVT_TIMER].val & APIC_LVTT_TM)
== APIC_LVTT_TM_TSCDLT);
}
static inline bool
vlapic_lvtt_masked(struct acrn_vlapic *vlapic)
{
return (vlapic->apic_page->lvt[APIC_LVT_TIMER].val & APIC_LVTT_M) != 0U;
}
static void vlapic_create_timer(struct acrn_vlapic *vlapic)
{
struct vlapic_timer *vtimer;
if (vlapic == NULL) {
return;
}
vtimer = &vlapic->vtimer;
(void)memset(vtimer, 0U, sizeof(struct vlapic_timer));
initialize_timer(&vtimer->timer,
vlapic_timer_expired, vlapic->vcpu,
0UL, 0, 0UL);
}
static void vlapic_reset_timer(struct acrn_vlapic *vlapic)
{
struct hv_timer *timer;
if (vlapic == NULL) {
return;
}
timer = &vlapic->vtimer.timer;
del_timer(timer);
timer->mode = 0;
timer->fire_tsc = 0UL;
timer->period_in_cycle = 0UL;
}
static bool
set_expiration(struct acrn_vlapic *vlapic)
{
uint64_t now = rdtsc();
uint64_t delta;
struct vlapic_timer *vtimer;
struct hv_timer *timer;
uint32_t tmicr, divisor_shift;
vtimer = &vlapic->vtimer;
tmicr = vtimer->tmicr;
divisor_shift = vtimer->divisor_shift;
if (!tmicr || divisor_shift > 8U) {
return false;
}
delta = tmicr << divisor_shift;
timer = &vtimer->timer;
if (vlapic_lvtt_period(vlapic)) {
timer->period_in_cycle = delta;
}
timer->fire_tsc = now + delta;
return true;
}
static void vlapic_update_lvtt(struct acrn_vlapic *vlapic,
uint32_t val)
{
uint32_t timer_mode = val & APIC_LVTT_TM;
struct vlapic_timer *vtimer = &vlapic->vtimer;
if (vtimer->mode != timer_mode) {
struct hv_timer *timer = &vtimer->timer;
/*
* A write to the LVT Timer Register that changes
* the timer mode disarms the local APIC timer.
*/
del_timer(timer);
timer->mode = (timer_mode == APIC_LVTT_TM_PERIODIC) ?
TICK_MODE_PERIODIC: TICK_MODE_ONESHOT;
timer->fire_tsc = 0UL;
timer->period_in_cycle = 0UL;
vtimer->mode = timer_mode;
}
}
static uint32_t vlapic_get_ccr(struct acrn_vlapic *vlapic)
{
uint64_t now = rdtsc();
uint32_t remain_count = 0U;
struct vlapic_timer *vtimer;
vtimer = &vlapic->vtimer;
if (vtimer->tmicr && !vlapic_lvtt_tsc_deadline(vlapic)) {
uint64_t fire_tsc = vtimer->timer.fire_tsc;
if (now < fire_tsc) {
uint32_t divisor_shift = vtimer->divisor_shift;
uint64_t shifted_delta =
(fire_tsc - now) >> divisor_shift;
remain_count = (uint32_t)shifted_delta;
}
}
return remain_count;
}
static void vlapic_dcr_write_handler(struct acrn_vlapic *vlapic)
{
uint32_t divisor_shift;
struct vlapic_timer *vtimer;
struct lapic_regs *lapic = vlapic->apic_page;
vtimer = &vlapic->vtimer;
divisor_shift = vlapic_timer_divisor_shift(lapic->dcr_timer);
vtimer->divisor_shift = divisor_shift;
}
static void vlapic_icrtmr_write_handler(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic;
struct vlapic_timer *vtimer;
if (vlapic_lvtt_tsc_deadline(vlapic)) {
return;
}
lapic = vlapic->apic_page;
vtimer = &vlapic->vtimer;
vtimer->tmicr = lapic->icr_timer;
del_timer(&vtimer->timer);
if (set_expiration(vlapic)) {
add_timer(&vtimer->timer);
}
}
static uint64_t vlapic_get_tsc_deadline_msr(struct acrn_vlapic *vlapic)
{
if (!vlapic_lvtt_tsc_deadline(vlapic)) {
return 0;
}
return (vlapic->vtimer.timer.fire_tsc == 0UL) ? 0UL :
vlapic->vcpu->guest_msrs[IDX_TSC_DEADLINE];
}
static void vlapic_set_tsc_deadline_msr(struct acrn_vlapic *vlapic,
uint64_t val_arg)
{
struct hv_timer *timer;
uint64_t val = val_arg;
if (!vlapic_lvtt_tsc_deadline(vlapic)) {
return;
}
vlapic->vcpu->guest_msrs[IDX_TSC_DEADLINE] = val;
timer = &vlapic->vtimer.timer;
del_timer(timer);
if (val != 0UL) {
struct vcpu_arch *arch = &vlapic->vcpu->arch_vcpu;
/* transfer guest tsc to host tsc */
val -= arch->contexts[arch->cur_context].tsc_offset;
timer->fire_tsc = val;
add_timer(timer);
} else {
timer->fire_tsc = 0UL;
}
}
static void
vlapic_esr_write_handler(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic;
lapic = vlapic->apic_page;
lapic->esr = vlapic->esr_pending;
vlapic->esr_pending = 0U;
}
/*
* Returns 1 if the vcpu needs to be notified of the interrupt and 0 otherwise.
*/
static int
vlapic_set_intr_ready(struct acrn_vlapic *vlapic, uint32_t vector, bool level)
{
struct lapic_regs *lapic;
struct lapic_reg *irrptr, *tmrptr;
uint32_t mask;
uint32_t idx;
ASSERT(vector <= NR_MAX_VECTOR,
"invalid vector %u", vector);
lapic = vlapic->apic_page;
if ((lapic->svr & APIC_SVR_ENABLE) == 0U) {
dev_dbg(ACRN_DBG_LAPIC,
"vlapic is software disabled, ignoring interrupt %u",
vector);
return 0;
}
if (vector < 16U) {
vlapic_set_error(vlapic, APIC_ESR_RECEIVE_ILLEGAL_VECTOR);
dev_dbg(ACRN_DBG_LAPIC,
"vlapic ignoring interrupt to vector %u", vector);
return 1;
}
if (vlapic->ops.apicv_set_intr_ready != NULL) {
return (*vlapic->ops.apicv_set_intr_ready)
(vlapic, vector, level);
}
idx = vector / 32U;
mask = 1U << (vector % 32U);
irrptr = &lapic->irr[0];
/* If the interrupt is set, don't try to do it again */
if (bitmap32_test_and_set_lock((uint16_t)(vector % 32U), &irrptr[idx].val)) {
return 0;
}
/*
* Verify that the trigger-mode of the interrupt matches with
* the vlapic TMR registers.
*/
tmrptr = &lapic->tmr[0];
if ((tmrptr[idx].val & mask) != (level ? mask : 0U)) {
dev_dbg(ACRN_DBG_LAPIC,
"vlapic TMR[%u] is 0x%08x but interrupt is %s-triggered",
idx, tmrptr[idx].val, level ? "level" : "edge");
}
vlapic_dump_irr(vlapic, "vlapic_set_intr_ready");
return 1;
}
static inline uint32_t
lvt_off_to_idx(uint32_t offset)
{
uint32_t index = ~0U;
switch (offset) {
case APIC_OFFSET_CMCI_LVT:
index = APIC_LVT_CMCI;
break;
case APIC_OFFSET_TIMER_LVT:
index = APIC_LVT_TIMER;
break;
case APIC_OFFSET_THERM_LVT:
index = APIC_LVT_THERMAL;
break;
case APIC_OFFSET_PERF_LVT:
index = APIC_LVT_PMC;
break;
case APIC_OFFSET_LINT0_LVT:
index = APIC_LVT_LINT0;
break;
case APIC_OFFSET_LINT1_LVT:
index = APIC_LVT_LINT1;
break;
case APIC_OFFSET_ERROR_LVT:
index = APIC_LVT_ERROR;
break;
default:
break;
}
ASSERT(index <= VLAPIC_MAXLVT_INDEX,
"%s: invalid lvt index %u for offset %#x",
__func__, index, offset);
return index;
}
static inline uint32_t *
vlapic_get_lvtptr(struct acrn_vlapic *vlapic, uint32_t offset)
{
struct lapic_regs *lapic = vlapic->apic_page;
uint32_t i;
switch (offset) {
case APIC_OFFSET_CMCI_LVT:
return &lapic->lvt_cmci;
case APIC_OFFSET_TIMER_LVT:
case APIC_OFFSET_THERM_LVT:
case APIC_OFFSET_PERF_LVT:
case APIC_OFFSET_LINT0_LVT:
case APIC_OFFSET_LINT1_LVT:
case APIC_OFFSET_ERROR_LVT:
i = lvt_off_to_idx(offset);
return &(lapic->lvt[i].val);
default:
panic("vlapic_get_lvt: invalid LVT\n");
}
}
static inline uint32_t
vlapic_get_lvt(struct acrn_vlapic *vlapic, uint32_t offset)
{
uint32_t idx, val;
idx = lvt_off_to_idx(offset);
val = atomic_load32(&vlapic->lvt_last[idx]);
return val;
}
static void
vlapic_lvt_write_handler(struct acrn_vlapic *vlapic, uint32_t offset)
{
uint32_t *lvtptr, mask, val, idx;
struct lapic_regs *lapic;
lapic = vlapic->apic_page;
lvtptr = vlapic_get_lvtptr(vlapic, offset);
val = *lvtptr;
idx = lvt_off_to_idx(offset);
if ((lapic->svr & APIC_SVR_ENABLE) == 0U) {
val |= APIC_LVT_M;
}
mask = APIC_LVT_M | APIC_LVT_DS | APIC_LVT_VECTOR;
switch (offset) {
case APIC_OFFSET_TIMER_LVT:
mask |= APIC_LVTT_TM;
break;
case APIC_OFFSET_ERROR_LVT:
break;
case APIC_OFFSET_LINT0_LVT:
case APIC_OFFSET_LINT1_LVT:
mask |= APIC_LVT_TM | APIC_LVT_RIRR | APIC_LVT_IIPP;
/* FALLTHROUGH */
default:
mask |= APIC_LVT_DM;
break;
}
val &= mask;
/* vlapic mask/unmask LINT0 for ExtINT? */
if (offset == APIC_OFFSET_LINT0_LVT &&
((val & APIC_LVT_DM) == APIC_LVT_DM_EXTINT)) {
uint32_t last = vlapic_get_lvt(vlapic, offset);
/* mask -> unmask: may from every vlapic in the vm */
if (((last & APIC_LVT_M) != 0U) && ((val & APIC_LVT_M) == 0U)) {
if (vlapic->vm->vpic_wire_mode == VPIC_WIRE_INTR ||
vlapic->vm->vpic_wire_mode == VPIC_WIRE_NULL) {
vlapic->vm->vpic_wire_mode = VPIC_WIRE_LAPIC;
dev_dbg(ACRN_DBG_LAPIC,
"vpic wire mode -> LAPIC");
} else {
pr_err("WARNING:invalid vpic wire mode change");
return;
}
/* unmask -> mask: only from the vlapic LINT0-ExtINT enabled */
} else if (((last & APIC_LVT_M) == 0U) && ((val & APIC_LVT_M) != 0U)) {
if (vlapic->vm->vpic_wire_mode == VPIC_WIRE_LAPIC) {
vlapic->vm->vpic_wire_mode = VPIC_WIRE_NULL;
dev_dbg(ACRN_DBG_LAPIC,
"vpic wire mode -> NULL");
}
} else {
/* APIC_LVT_M unchanged. No action required. */
}
} else if (offset == APIC_OFFSET_TIMER_LVT) {
vlapic_update_lvtt(vlapic, val);
} else {
/* No action required. */
}
*lvtptr = val;
atomic_store32(&vlapic->lvt_last[idx], val);
}
static void
vlapic_mask_lvts(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic = vlapic->apic_page;
lapic->lvt_cmci |= APIC_LVT_M;
vlapic_lvt_write_handler(vlapic, APIC_OFFSET_CMCI_LVT);
lapic->lvt[APIC_LVT_TIMER].val |= APIC_LVT_M;
vlapic_lvt_write_handler(vlapic, APIC_OFFSET_TIMER_LVT);
lapic->lvt[APIC_LVT_THERMAL].val |= APIC_LVT_M;
vlapic_lvt_write_handler(vlapic, APIC_OFFSET_THERM_LVT);
lapic->lvt[APIC_LVT_PMC].val |= APIC_LVT_M;
vlapic_lvt_write_handler(vlapic, APIC_OFFSET_PERF_LVT);
lapic->lvt[APIC_LVT_LINT0].val |= APIC_LVT_M;
vlapic_lvt_write_handler(vlapic, APIC_OFFSET_LINT0_LVT);
lapic->lvt[APIC_LVT_LINT1].val |= APIC_LVT_M;
vlapic_lvt_write_handler(vlapic, APIC_OFFSET_LINT1_LVT);
lapic->lvt[APIC_LVT_ERROR].val |= APIC_LVT_M;
vlapic_lvt_write_handler(vlapic, APIC_OFFSET_ERROR_LVT);
}
static int
vlapic_fire_lvt(struct acrn_vlapic *vlapic, uint32_t lvt)
{
uint32_t vec, mode;
struct vcpu *vcpu = vlapic->vcpu;
if ((lvt & APIC_LVT_M) != 0U) {
return 0;
}
vec = lvt & APIC_LVT_VECTOR;
mode = lvt & APIC_LVT_DM;
switch (mode) {
case APIC_LVT_DM_FIXED:
if (vec < 16U) {
vlapic_set_error(vlapic, APIC_ESR_SEND_ILLEGAL_VECTOR);
return 0;
}
if (vlapic_set_intr_ready(vlapic, vec, false) != 0) {
vcpu_make_request(vcpu, ACRN_REQUEST_EVENT);
}
break;
case APIC_LVT_DM_NMI:
vcpu_inject_nmi(vcpu);
break;
case APIC_LVT_DM_EXTINT:
vcpu_inject_extint(vcpu);
break;
default:
/* Other modes ignored */
return 0;
}
return 1;
}
static void
dump_isrvec_stk(struct acrn_vlapic *vlapic)
{
uint32_t i;
struct lapic_reg *isrptr;
isrptr = &vlapic->apic_page->isr[0];
for (i = 0U; i < 8U; i++) {
printf("ISR%u 0x%08x\n", i, isrptr[i].val);
}
for (i = 0U; i <= vlapic->isrvec_stk_top; i++) {
printf("isrvec_stk[%u] = %hhu\n", i, vlapic->isrvec_stk[i]);
}
}
/*
* Algorithm adopted from section "Interrupt, Task and Processor Priority"
* in Intel Architecture Manual Vol 3a.
*/
static void
vlapic_update_ppr(struct acrn_vlapic *vlapic)
{
uint32_t top_isrvec;
uint32_t tpr, ppr;
/*
* Note that the value on the stack at index 0 is always 0.
*
* This is a placeholder for the value of ISRV when none of the
* bits is set in the ISRx registers.
*/
top_isrvec = (uint32_t)vlapic->isrvec_stk[vlapic->isrvec_stk_top];
tpr = vlapic->apic_page->tpr;
/* update ppr */
{
int32_t lastprio, curprio;
struct lapic_reg *isrptr;
uint32_t i, idx, vector;
uint32_t isrvec;
if (vlapic->isrvec_stk_top == 0U && top_isrvec != 0U) {
panic("isrvec_stk is corrupted: %u", top_isrvec);
}
/*
* Make sure that the priority of the nested interrupts is
* always increasing.
*/
lastprio = -1;
for (i = 1U; i <= vlapic->isrvec_stk_top; i++) {
isrvec = (uint32_t)vlapic->isrvec_stk[i];
curprio = (int32_t)PRIO(isrvec);
if (curprio <= lastprio) {
dump_isrvec_stk(vlapic);
panic("isrvec_stk does not satisfy invariant");
}
lastprio = curprio;
}
/*
* Make sure that each bit set in the ISRx registers has a
* corresponding entry on the isrvec stack.
*/
i = 1U;
isrptr = &vlapic->apic_page->isr[0];
for (vector = 0U; vector < 256U; vector++) {
idx = vector / 32U;
if ((isrptr[idx].val & (1U << (vector % 32U))) != 0U) {
isrvec = (uint32_t)vlapic->isrvec_stk[i];
if ((i > vlapic->isrvec_stk_top) ||
((i < ISRVEC_STK_SIZE) &&
(isrvec != vector))) {
dump_isrvec_stk(vlapic);
panic("ISR and isrvec_stk out of sync");
}
i++;
}
}
}
if (PRIO(tpr) >= PRIO(top_isrvec)) {
ppr = tpr;
} else {
ppr = top_isrvec & 0xf0U;
}
vlapic->apic_page->ppr = ppr;
dev_dbg(ACRN_DBG_LAPIC, "%s 0x%02x", __func__, ppr);
}
static void
vlapic_process_eoi(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic = vlapic->apic_page;
struct lapic_reg *isrptr, *tmrptr;
uint32_t i, vector, bitpos;
isrptr = &lapic->isr[0];
tmrptr = &lapic->tmr[0];
/* i ranges effectively from 7 to 0 */
for (i = 8U; i > 0U; ) {
i--;
bitpos = (uint32_t)fls32(isrptr[i].val);
if (bitpos != INVALID_BIT_INDEX) {
if (vlapic->isrvec_stk_top == 0U) {
panic("invalid vlapic isrvec_stk_top %u",
vlapic->isrvec_stk_top);
}
isrptr[i].val &= ~(1U << bitpos);
vector = (i * 32U) + bitpos;
dev_dbg(ACRN_DBG_LAPIC, "EOI vector %u", vector);
vlapic_dump_isr(vlapic, "vlapic_process_eoi");
vlapic->isrvec_stk_top--;
vlapic_update_ppr(vlapic);
if ((tmrptr[i].val & (1U << bitpos)) != 0U) {
/* hook to vIOAPIC */
vioapic_process_eoi(vlapic->vm, vector);
}
return;
}
}
dev_dbg(ACRN_DBG_LAPIC, "Gratuitous EOI");
}
static void
vlapic_set_error(struct acrn_vlapic *vlapic, uint32_t mask)
{
uint32_t lvt;
vlapic->esr_pending |= mask;
if (vlapic->esr_firing != 0) {
return;
}
vlapic->esr_firing = 1;
/* The error LVT always uses the fixed delivery mode. */
lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_ERROR_LVT);
vlapic_fire_lvt(vlapic, lvt | APIC_LVT_DM_FIXED);
vlapic->esr_firing = 0;
}
static int
vlapic_trigger_lvt(struct acrn_vlapic *vlapic, uint32_t vector)
{
uint32_t lvt;
struct vcpu *vcpu = vlapic->vcpu;
if (vlapic_enabled(vlapic) == false) {
/*
* When the local APIC is global/hardware disabled,
* LINT[1:0] pins are configured as INTR and NMI pins,
* respectively.
*/
switch (vector) {
case APIC_LVT_LINT0:
vcpu_inject_extint(vcpu);
break;
case APIC_LVT_LINT1:
vcpu_inject_nmi(vcpu);
break;
default:
break;
}
return 0;
}
switch (vector) {
case APIC_LVT_LINT0:
lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_LINT0_LVT);
break;
case APIC_LVT_LINT1:
lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_LINT1_LVT);
break;
case APIC_LVT_TIMER:
lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_TIMER_LVT);
lvt |= APIC_LVT_DM_FIXED;
break;
case APIC_LVT_ERROR:
lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_ERROR_LVT);
lvt |= APIC_LVT_DM_FIXED;
break;
case APIC_LVT_PMC:
lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_PERF_LVT);
break;
case APIC_LVT_THERMAL:
lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_THERM_LVT);
break;
case APIC_LVT_CMCI:
lvt = vlapic_get_lvt(vlapic, APIC_OFFSET_CMCI_LVT);
break;
default:
return -EINVAL;
}
vlapic_fire_lvt(vlapic, lvt);
return 0;
}
/*
* This function populates 'dmask' with the set of vcpus that match the
* addressing specified by the (dest, phys, lowprio) tuple.
*/
static void
vlapic_calcdest(struct vm *vm, uint64_t *dmask, uint32_t dest,
bool phys, bool lowprio)
{
struct acrn_vlapic *vlapic;
struct acrn_vlapic *target = NULL;
uint32_t dfr, ldr, ldest, cluster;
uint32_t mda_flat_ldest, mda_cluster_ldest, mda_ldest, mda_cluster_id;
uint64_t amask;
uint16_t vcpu_id;
if (dest == 0xffU) {
/*
* Broadcast in both logical and physical modes.
*/
*dmask = vm_active_cpus(vm);
return;
}
if (phys) {
/*
* Physical mode: destination is LAPIC ID.
*/
*dmask = 0UL;
vcpu_id = vm_apicid2vcpu_id(vm, (uint8_t)dest);
if (vcpu_id < phys_cpu_num) {
bitmap_set_lock(vcpu_id, dmask);
}
} else {
/*
* In the "Flat Model" the MDA is interpreted as an 8-bit wide
* bitmask. This model is only available in the xAPIC mode.
*/
mda_flat_ldest = dest & 0xffU;
/*
* In the "Cluster Model" the MDA is used to identify a
* specific cluster and a set of APICs in that cluster.
*/
mda_cluster_id = (dest >> 4) & 0xfU;
mda_cluster_ldest = dest & 0xfU;
/*
* Logical mode: match each APIC that has a bit set
* in its LDR that matches a bit in the ldest.
*/
*dmask = 0UL;
amask = vm_active_cpus(vm);
for (vcpu_id = ffs64(amask); vcpu_id != INVALID_BIT_INDEX;
vcpu_id = ffs64(amask)) {
bitmap_clear_lock(vcpu_id, &amask);
vlapic = vm_lapic_from_vcpu_id(vm, vcpu_id);
dfr = vlapic->apic_page->dfr;
ldr = vlapic->apic_page->ldr;
if ((dfr & APIC_DFR_MODEL_MASK) ==
APIC_DFR_MODEL_FLAT) {
ldest = ldr >> 24;
mda_ldest = mda_flat_ldest;
} else if ((dfr & APIC_DFR_MODEL_MASK) ==
APIC_DFR_MODEL_CLUSTER) {
cluster = ldr >> 28;
ldest = (ldr >> 24) & 0xfU;
if (cluster != mda_cluster_id) {
continue;
}
mda_ldest = mda_cluster_ldest;
} else {
/*
* Guest has configured a bad logical
* model for this vcpu - skip it.
*/
dev_dbg(ACRN_DBG_LAPIC,
"CANNOT deliver interrupt");
dev_dbg(ACRN_DBG_LAPIC,
"vlapic has bad logical model %x", dfr);
continue;
}
if ((mda_ldest & ldest) != 0U) {
if (lowprio) {
if (target == NULL) {
target = vlapic;
} else if (target->apic_page->ppr >
vlapic->apic_page->ppr) {
target = vlapic;
} else {
/* target is the dest */
}
} else {
bitmap_set_lock(vcpu_id, dmask);
}
}
}
if (lowprio && (target != NULL)) {
bitmap_set_lock(target->vcpu->vcpu_id, dmask);
}
}
}
void
calcvdest(struct vm *vm, uint64_t *dmask, uint32_t dest, bool phys)
{
vlapic_calcdest(vm, dmask, dest, phys, false);
}
static void
vlapic_set_tpr(struct acrn_vlapic *vlapic, uint32_t val)
{
struct lapic_regs *lapic = vlapic->apic_page;
if (lapic->tpr != val) {
dev_dbg(ACRN_DBG_LAPIC,
"vlapic TPR changed from %#x to %#x", lapic->tpr, val);
lapic->tpr = val;
vlapic_update_ppr(vlapic);
}
}
static uint32_t
vlapic_get_tpr(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic = vlapic->apic_page;
return lapic->tpr;
}
void
vlapic_set_cr8(struct acrn_vlapic *vlapic, uint64_t val)
{
uint32_t tpr;
if ((val & ~0xfUL) != 0U) {
struct vcpu *vcpu = vlapic->vcpu;
vcpu_inject_gp(vcpu, 0U);
return;
}
/* It is safe to narrow val as the higher 60 bits are 0s. */
tpr = (uint32_t)val << 4U;
vlapic_set_tpr(vlapic, tpr);
}
uint64_t
vlapic_get_cr8(struct acrn_vlapic *vlapic)
{
uint32_t tpr;
tpr = vlapic_get_tpr(vlapic);
return (uint64_t)(tpr >> 4U);
}
static int
vlapic_icrlo_write_handler(struct acrn_vlapic *vlapic)
{
uint16_t vcpu_id;
bool phys;
uint64_t dmask = 0UL;
uint32_t icr_low, icr_high, dest;
uint32_t vec, mode, shorthand;
struct lapic_regs *lapic;
struct vcpu *target_vcpu;
lapic = vlapic->apic_page;
lapic->icr_lo &= ~APIC_DELSTAT_PEND;
icr_low = lapic->icr_lo;
icr_high = lapic->icr_hi;
dest = icr_high >> APIC_ID_SHIFT;
vec = icr_low & APIC_VECTOR_MASK;
mode = icr_low & APIC_DELMODE_MASK;
phys = ((icr_low & APIC_DESTMODE_LOG) == 0UL);
shorthand = icr_low & APIC_DEST_MASK;
if (mode == APIC_DELMODE_FIXED && vec < 16U) {
vlapic_set_error(vlapic, APIC_ESR_SEND_ILLEGAL_VECTOR);
dev_dbg(ACRN_DBG_LAPIC, "Ignoring invalid IPI %u", vec);
return 0;
}
dev_dbg(ACRN_DBG_LAPIC,
"icrlo 0x%08x icrhi 0x%08x triggered ipi %u",
icr_low, icr_high, vec);
if ((shorthand == APIC_DEST_SELF || shorthand == APIC_DEST_ALLISELF)
&& (mode == APIC_DELMODE_NMI || mode == APIC_DELMODE_INIT
|| mode == APIC_DELMODE_STARTUP)) {
dev_dbg(ACRN_DBG_LAPIC, "Invalid ICR value");
return 0;
}
switch (shorthand) {
case APIC_DEST_DESTFLD:
vlapic_calcdest(vlapic->vm, &dmask, dest, phys, false);
break;
case APIC_DEST_SELF:
bitmap_set_lock(vlapic->vcpu->vcpu_id, &dmask);
break;
case APIC_DEST_ALLISELF:
dmask = vm_active_cpus(vlapic->vm);
break;
case APIC_DEST_ALLESELF:
dmask = vm_active_cpus(vlapic->vm);
bitmap_clear_lock(vlapic->vcpu->vcpu_id, &dmask);
break;
}
while ((vcpu_id = ffs64(dmask)) != INVALID_BIT_INDEX) {
bitmap_clear_lock(vcpu_id, &dmask);
target_vcpu = vcpu_from_vid(vlapic->vm, vcpu_id);
if (target_vcpu == NULL) {
continue;
}
if (mode == APIC_DELMODE_FIXED) {
vlapic_set_intr(target_vcpu, vec,
LAPIC_TRIG_EDGE);
dev_dbg(ACRN_DBG_LAPIC,
"vlapic sending ipi %u to vcpu_id %hu",
vec, vcpu_id);
} else if (mode == APIC_DELMODE_NMI) {
vcpu_inject_nmi(target_vcpu);
dev_dbg(ACRN_DBG_LAPIC,
"vlapic send ipi nmi to vcpu_id %hu", vcpu_id);
} else if (mode == APIC_DELMODE_INIT) {
if ((icr_low & APIC_LEVEL_MASK) == APIC_LEVEL_DEASSERT) {
continue;
}
dev_dbg(ACRN_DBG_LAPIC,
"Sending INIT from VCPU %hu to %hu",
vlapic->vcpu->vcpu_id, vcpu_id);
/* put target vcpu to INIT state and wait for SIPI */
pause_vcpu(target_vcpu, VCPU_PAUSED);
reset_vcpu(target_vcpu);
/* new cpu model only need one SIPI to kick AP run,
* the second SIPI will be ignored as it move out of
* wait-for-SIPI state.
*/
target_vcpu->arch_vcpu.nr_sipi = 1U;
} else if (mode == APIC_DELMODE_STARTUP) {
/* Ignore SIPIs in any state other than wait-for-SIPI */
if ((target_vcpu->state != VCPU_INIT) ||
(target_vcpu->arch_vcpu.nr_sipi == 0U)) {
continue;
}
dev_dbg(ACRN_DBG_LAPIC,
"Sending SIPI from VCPU %hu to %hu with vector %u",
vlapic->vcpu->vcpu_id, vcpu_id, vec);
target_vcpu->arch_vcpu.nr_sipi--;
if (target_vcpu->arch_vcpu.nr_sipi > 0U) {
continue;
}
target_vcpu->arch_vcpu.cpu_mode = CPU_MODE_REAL;
target_vcpu->arch_vcpu.sipi_vector = vec;
pr_err("Start Secondary VCPU%hu for VM[%d]...",
target_vcpu->vcpu_id,
target_vcpu->vm->attr.id);
schedule_vcpu(target_vcpu);
} else {
pr_err("Unhandled icrlo write with mode %u\n", mode);
}
}
return 0; /* handled completely in the kernel */
}
int
vlapic_pending_intr(struct acrn_vlapic *vlapic, uint32_t *vecptr)
{
struct lapic_regs *lapic = vlapic->apic_page;
uint32_t i, vector, val, bitpos;
struct lapic_reg *irrptr;
if (vlapic->ops.apicv_pending_intr != NULL) {
return (*vlapic->ops.apicv_pending_intr)(vlapic, vecptr);
}
irrptr = &lapic->irr[0];
/* i ranges effectively from 7 to 0 */
for (i = 8U; i > 0U; ) {
i--;
val = atomic_load32(&irrptr[i].val);
bitpos = (uint32_t)fls32(val);
if (bitpos != INVALID_BIT_INDEX) {
vector = (i * 32U) + bitpos;
if (PRIO(vector) > PRIO(lapic->ppr)) {
if (vecptr != NULL) {
*vecptr = vector;
}
return 1;
}
break;
}
}
return 0;
}
void
vlapic_intr_accepted(struct acrn_vlapic *vlapic, uint32_t vector)
{
struct lapic_regs *lapic = vlapic->apic_page;
struct lapic_reg *irrptr, *isrptr;
uint32_t idx, stk_top;
if (vlapic->ops.apicv_intr_accepted != NULL) {
vlapic->ops.apicv_intr_accepted(vlapic, vector);
return;
}
/*
* clear the ready bit for vector being accepted in irr
* and set the vector as in service in isr.
*/
idx = vector / 32U;
irrptr = &lapic->irr[0];
atomic_clear32(&irrptr[idx].val, 1U << (vector % 32U));
vlapic_dump_irr(vlapic, "vlapic_intr_accepted");
isrptr = &lapic->isr[0];
isrptr[idx].val |= 1U << (vector % 32U);
vlapic_dump_isr(vlapic, "vlapic_intr_accepted");
/*
* Update the PPR
*/
vlapic->isrvec_stk_top++;
stk_top = vlapic->isrvec_stk_top;
if (stk_top >= ISRVEC_STK_SIZE) {
panic("isrvec_stk_top overflow %u", stk_top);
}
vlapic->isrvec_stk[stk_top] = (uint8_t)vector;
vlapic_update_ppr(vlapic);
}
static void
vlapic_svr_write_handler(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic;
uint32_t old, new, changed;
lapic = vlapic->apic_page;
new = lapic->svr;
old = vlapic->svr_last;
vlapic->svr_last = new;
changed = old ^ new;
if ((changed & APIC_SVR_ENABLE) != 0U) {
if ((new & APIC_SVR_ENABLE) == 0U) {
/*
* The apic is now disabled so stop the apic timer
* and mask all the LVT entries.
*/
dev_dbg(ACRN_DBG_LAPIC, "vlapic is software-disabled");
del_timer(&vlapic->vtimer.timer);
vlapic_mask_lvts(vlapic);
/* the only one enabled LINT0-ExtINT vlapic disabled */
if (vlapic->vm->vpic_wire_mode == VPIC_WIRE_NULL) {
vlapic->vm->vpic_wire_mode = VPIC_WIRE_INTR;
dev_dbg(ACRN_DBG_LAPIC,
"vpic wire mode -> INTR");
}
} else {
/*
* The apic is now enabled so restart the apic timer
* if it is configured in periodic mode.
*/
dev_dbg(ACRN_DBG_LAPIC, "vlapic is software-enabled");
if (vlapic_lvtt_period(vlapic)) {
if (set_expiration(vlapic)) {
add_timer(&vlapic->vtimer.timer);
}
}
}
}
}
static int
vlapic_read(struct acrn_vlapic *vlapic, int mmio_access, uint32_t offset_arg,
uint64_t *data)
{
struct lapic_regs *lapic = vlapic->apic_page;
uint32_t i;
uint32_t offset = offset_arg;
if (mmio_access == 0) {
/*
* XXX Generate GP fault for MSR accesses in xAPIC mode
*/
dev_dbg(ACRN_DBG_LAPIC,
"x2APIC MSR read from offset %#x in xAPIC mode",
offset);
*data = 0UL;
goto done;
}
if (offset > sizeof(*lapic)) {
*data = 0UL;
goto done;
}
offset &= ~0x3UL;
switch (offset) {
case APIC_OFFSET_ID:
*data = lapic->id;
break;
case APIC_OFFSET_VER:
*data = lapic->version;
break;
case APIC_OFFSET_TPR:
*data = vlapic_get_tpr(vlapic);
break;
case APIC_OFFSET_APR:
*data = lapic->apr;
break;
case APIC_OFFSET_PPR:
*data = lapic->ppr;
break;
case APIC_OFFSET_EOI:
*data = lapic->eoi;
break;
case APIC_OFFSET_LDR:
*data = lapic->ldr;
break;
case APIC_OFFSET_DFR:
*data = lapic->dfr;
break;
case APIC_OFFSET_SVR:
*data = lapic->svr;
break;
case APIC_OFFSET_ISR0:
case APIC_OFFSET_ISR1:
case APIC_OFFSET_ISR2:
case APIC_OFFSET_ISR3:
case APIC_OFFSET_ISR4:
case APIC_OFFSET_ISR5:
case APIC_OFFSET_ISR6:
case APIC_OFFSET_ISR7:
i = (offset - APIC_OFFSET_ISR0) >> 4;
*data = lapic->isr[i].val;
break;
case APIC_OFFSET_TMR0:
case APIC_OFFSET_TMR1:
case APIC_OFFSET_TMR2:
case APIC_OFFSET_TMR3:
case APIC_OFFSET_TMR4:
case APIC_OFFSET_TMR5:
case APIC_OFFSET_TMR6:
case APIC_OFFSET_TMR7:
i = (offset - APIC_OFFSET_TMR0) >> 4;
*data = lapic->tmr[i].val;
break;
case APIC_OFFSET_IRR0:
case APIC_OFFSET_IRR1:
case APIC_OFFSET_IRR2:
case APIC_OFFSET_IRR3:
case APIC_OFFSET_IRR4:
case APIC_OFFSET_IRR5:
case APIC_OFFSET_IRR6:
case APIC_OFFSET_IRR7:
i = (offset - APIC_OFFSET_IRR0) >> 4;
*data = lapic->irr[i].val;
break;
case APIC_OFFSET_ESR:
*data = lapic->esr;
break;
case APIC_OFFSET_ICR_LOW:
*data = lapic->icr_lo;
break;
case APIC_OFFSET_ICR_HI:
*data = lapic->icr_hi;
break;
case APIC_OFFSET_CMCI_LVT:
case APIC_OFFSET_TIMER_LVT:
case APIC_OFFSET_THERM_LVT:
case APIC_OFFSET_PERF_LVT:
case APIC_OFFSET_LINT0_LVT:
case APIC_OFFSET_LINT1_LVT:
case APIC_OFFSET_ERROR_LVT:
*data = vlapic_get_lvt(vlapic, offset);
#ifdef INVARIANTS
reg = vlapic_get_lvtptr(vlapic, offset);
ASSERT(*data == *reg,
"inconsistent lvt value at offset %#x: %#lx/%#x",
offset, *data, *reg);
#endif
break;
case APIC_OFFSET_TIMER_ICR:
/* if TSCDEADLINE mode always return 0*/
if (vlapic_lvtt_tsc_deadline(vlapic)) {
*data = 0UL;
} else {
*data = lapic->icr_timer;
}
break;
case APIC_OFFSET_TIMER_CCR:
*data = vlapic_get_ccr(vlapic);
break;
case APIC_OFFSET_TIMER_DCR:
*data = lapic->dcr_timer;
break;
case APIC_OFFSET_SELF_IPI:
/*
* XXX generate a GP fault if vlapic is in x2apic mode
*/
*data = 0UL;
break;
case APIC_OFFSET_RRR:
default:
*data = 0UL;
break;
}
done:
dev_dbg(ACRN_DBG_LAPIC,
"vlapic read offset %#x, data %#lx", offset, *data);
return 0;
}
static int
vlapic_write(struct acrn_vlapic *vlapic, int mmio_access, uint32_t offset,
uint64_t data)
{
struct lapic_regs *lapic = vlapic->apic_page;
uint32_t *regptr;
uint32_t data32 = (uint32_t)data;
int retval;
ASSERT((offset & 0xfU) == 0U && offset < CPU_PAGE_SIZE,
"%s: invalid offset %#x", __func__, offset);
dev_dbg(ACRN_DBG_LAPIC, "vlapic write offset %#x, data %#lx",
offset, data);
if (offset > sizeof(*lapic)) {
return 0;
}
/*
* XXX Generate GP fault for MSR accesses in xAPIC mode
*/
if (mmio_access == 0) {
dev_dbg(ACRN_DBG_LAPIC,
"x2APIC MSR write of %#lx to offset %#x in xAPIC mode",
data, offset);
return 0;
}
retval = 0;
switch (offset) {
case APIC_OFFSET_ID:
lapic->id = data32;
vlapic_id_write_handler(vlapic);
break;
case APIC_OFFSET_TPR:
vlapic_set_tpr(vlapic, data32 & 0xffU);
break;
case APIC_OFFSET_EOI:
vlapic_process_eoi(vlapic);
break;
case APIC_OFFSET_LDR:
lapic->ldr = data32;
vlapic_ldr_write_handler(vlapic);
break;
case APIC_OFFSET_DFR:
lapic->dfr = data32;
vlapic_dfr_write_handler(vlapic);
break;
case APIC_OFFSET_SVR:
lapic->svr = data32;
vlapic_svr_write_handler(vlapic);
break;
case APIC_OFFSET_ICR_LOW:
lapic->icr_lo = data32;
retval = vlapic_icrlo_write_handler(vlapic);
break;
case APIC_OFFSET_ICR_HI:
lapic->icr_hi = data32;
break;
case APIC_OFFSET_CMCI_LVT:
case APIC_OFFSET_TIMER_LVT:
case APIC_OFFSET_THERM_LVT:
case APIC_OFFSET_PERF_LVT:
case APIC_OFFSET_LINT0_LVT:
case APIC_OFFSET_LINT1_LVT:
case APIC_OFFSET_ERROR_LVT:
regptr = vlapic_get_lvtptr(vlapic, offset);
*regptr = data32;
vlapic_lvt_write_handler(vlapic, offset);
break;
case APIC_OFFSET_TIMER_ICR:
/* if TSCDEADLINE mode ignore icr_timer */
if (vlapic_lvtt_tsc_deadline(vlapic)) {
break;
}
lapic->icr_timer = data32;
vlapic_icrtmr_write_handler(vlapic);
break;
case APIC_OFFSET_TIMER_DCR:
lapic->dcr_timer = data32;
vlapic_dcr_write_handler(vlapic);
break;
case APIC_OFFSET_ESR:
vlapic_esr_write_handler(vlapic);
break;
case APIC_OFFSET_SELF_IPI:
break;
case APIC_OFFSET_VER:
case APIC_OFFSET_APR:
case APIC_OFFSET_PPR:
case APIC_OFFSET_RRR:
break;
/*The following cases fall to the default one:
* APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7
* APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7
* APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7
*/
case APIC_OFFSET_TIMER_CCR:
break;
default:
/* Read only */
break;
}
return retval;
}
void
vlapic_reset(struct acrn_vlapic *vlapic)
{
uint32_t i;
struct lapic_regs *lapic;
void *apic_page;
lapic = vlapic->apic_page;
apic_page = (void *)vlapic->apic_page;
(void)memset(apic_page, 0U, CPU_PAGE_SIZE);
if (vlapic->pir_desc) {
(void)memset(vlapic->pir_desc, 0U, sizeof(struct vlapic_pir_desc));
}
lapic->id = vlapic_build_id(vlapic);
lapic->version = VLAPIC_VERSION;
lapic->version |= (VLAPIC_MAXLVT_INDEX << MAXLVTSHIFT);
lapic->dfr = 0xffffffffU;
lapic->svr = APIC_SVR_VECTOR;
vlapic_mask_lvts(vlapic);
vlapic_reset_tmr(vlapic);
lapic->icr_timer = 0U;
lapic->dcr_timer = 0U;
vlapic_reset_timer(vlapic);
vlapic->svr_last = lapic->svr;
for (i = 0U; i < (VLAPIC_MAXLVT_INDEX + 1U); i++) {
vlapic->lvt_last[i] = 0U;
}
for (i = 0U; i < ISRVEC_STK_SIZE; i++) {
vlapic->isrvec_stk[i] = 0U;
}
vlapic->isrvec_stk_top = 0U;
}
void
vlapic_init(struct acrn_vlapic *vlapic)
{
ASSERT(vlapic->vm != NULL, "%s: vm is not initialized", __func__);
ASSERT(vlapic->vcpu->vcpu_id < phys_cpu_num,
"%s: vcpu_id is not initialized", __func__);
ASSERT(vlapic->apic_page != NULL,
"%s: apic_page is not initialized", __func__);
/*
* If the vlapic is configured in x2apic mode then it will be
* accessed in the critical section via the MSR emulation code.
*/
vlapic->msr_apicbase = DEFAULT_APIC_BASE | APICBASE_ENABLED;
if (vlapic->vcpu->vcpu_id == 0U) {
vlapic->msr_apicbase |= APICBASE_BSP;
}
vlapic_create_timer(vlapic);
vlapic_reset(vlapic);
}
void vlapic_restore(struct acrn_vlapic *vlapic, struct lapic_regs *regs)
{
struct lapic_regs *lapic;
int i;
lapic = vlapic->apic_page;
lapic->tpr = regs->tpr;
lapic->apr = regs->apr;
lapic->ppr = regs->ppr;
lapic->ldr = regs->ldr;
lapic->dfr = regs->dfr;
for (i = 0; i < 8; i++) {
lapic->tmr[i].val = regs->tmr[i].val;
}
lapic->svr = regs->svr;
vlapic_svr_write_handler(vlapic);
lapic->lvt[APIC_LVT_TIMER].val = regs->lvt[APIC_LVT_TIMER].val;
lapic->lvt[APIC_LVT_LINT0].val = regs->lvt[APIC_LVT_LINT0].val;
lapic->lvt[APIC_LVT_LINT1].val = regs->lvt[APIC_LVT_LINT1].val;
lapic->lvt[APIC_LVT_ERROR].val = regs->lvt[APIC_LVT_ERROR].val;
lapic->icr_timer = regs->icr_timer;
lapic->ccr_timer = regs->ccr_timer;
lapic->dcr_timer = regs->dcr_timer;
}
static uint64_t
vlapic_get_apicbase(struct acrn_vlapic *vlapic)
{
return vlapic->msr_apicbase;
}
static int
vlapic_set_apicbase(struct acrn_vlapic *vlapic, uint64_t new)
{
if (vlapic->msr_apicbase != new) {
dev_dbg(ACRN_DBG_LAPIC,
"NOT support to change APIC_BASE MSR from %#lx to %#lx",
vlapic->msr_apicbase, new);
return (-1);
}
return 0;
}
void
vlapic_deliver_intr(struct vm *vm, bool level, uint32_t dest, bool phys,
uint32_t delmode, uint32_t vec, bool rh)
{
bool lowprio;
uint16_t vcpu_id;
uint64_t dmask;
struct vcpu *target_vcpu;
if (delmode != IOAPIC_RTE_DELFIXED &&
delmode != IOAPIC_RTE_DELLOPRI &&
delmode != IOAPIC_RTE_DELEXINT) {
dev_dbg(ACRN_DBG_LAPIC,
"vlapic intr invalid delmode %#x", delmode);
return;
}
lowprio = (delmode == IOAPIC_RTE_DELLOPRI) || rh;
/*
* We don't provide any virtual interrupt redirection hardware so
* all interrupts originating from the ioapic or MSI specify the
* 'dest' in the legacy xAPIC format.
*/
vlapic_calcdest(vm, &dmask, dest, phys, lowprio);
for (vcpu_id = ffs64(dmask); vcpu_id != INVALID_BIT_INDEX;
vcpu_id = ffs64(dmask)) {
struct acrn_vlapic *vlapic;
bitmap_clear_lock(vcpu_id, &dmask);
target_vcpu = vcpu_from_vid(vm, vcpu_id);
if (target_vcpu == NULL) {
return;
}
/* only make request when vlapic enabled */
vlapic = target_vcpu->arch_vcpu.vlapic;
if (vlapic_enabled(vlapic)) {
if (delmode == IOAPIC_RTE_DELEXINT) {
vcpu_inject_extint(target_vcpu);
} else {
vlapic_set_intr(target_vcpu, vec, level);
}
}
}
}
bool
vlapic_enabled(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic = vlapic->apic_page;
if (((vlapic->msr_apicbase & APICBASE_ENABLED) != 0U) &&
((lapic->svr & APIC_SVR_ENABLE) != 0U)) {
return true;
} else {
return false;
}
}
static void
vlapic_set_tmr(struct acrn_vlapic *vlapic, uint32_t vector, bool level)
{
struct lapic_regs *lapic;
struct lapic_reg *tmrptr;
uint32_t mask, idx;
lapic = vlapic->apic_page;
tmrptr = &lapic->tmr[0];
idx = vector / 32U;
mask = 1U << (vector % 32U);
if (level) {
tmrptr[idx].val |= mask;
} else {
tmrptr[idx].val &= ~mask;
}
}
/*
* APICv batch set tmr will try to set multi vec at the same time
* to avoid unnecessary VMCS read/update.
*/
void
vlapic_apicv_batch_set_tmr(struct acrn_vlapic *vlapic)
{
if (vlapic->ops.apicv_batch_set_tmr != NULL) {
vlapic->ops.apicv_batch_set_tmr(vlapic);
}
}
static void
vlapic_apicv_set_tmr(struct acrn_vlapic *vlapic, uint32_t vector, bool level)
{
if (vlapic->ops.apicv_set_tmr != NULL) {
vlapic->ops.apicv_set_tmr(vlapic, vector, level);
}
}
void
vlapic_reset_tmr(struct acrn_vlapic *vlapic)
{
struct vcpu *vcpu = vlapic->vcpu;
uint32_t vector;
dev_dbg(ACRN_DBG_LAPIC,
"vlapic resetting all vectors to edge-triggered");
for (vector = 0U; vector <= 255U; vector++) {
vlapic_set_tmr(vlapic, vector, false);
}
vcpu_make_request(vcpu, ACRN_REQUEST_TMR_UPDATE);
}
void
vlapic_set_tmr_one_vec(struct acrn_vlapic *vlapic, uint32_t delmode,
uint32_t vector, bool level)
{
ASSERT(vector <= NR_MAX_VECTOR,
"invalid vector %u", vector);
/*
* A level trigger is valid only for fixed and lowprio delivery modes.
*/
if (delmode != APIC_DELMODE_FIXED && delmode != APIC_DELMODE_LOWPRIO) {
dev_dbg(ACRN_DBG_LAPIC,
"Ignoring level trigger-mode for delivery-mode %u",
delmode);
return;
}
/* NOTE
* We don't check whether the vcpu is in the dest here. That means
* all vcpus of vm will do tmr update.
*
* If there is new caller to this function, need to refine this
* part of work.
*/
dev_dbg(ACRN_DBG_LAPIC, "vector %u set to level-triggered", vector);
vlapic_set_tmr(vlapic, vector, level);
}
int
vlapic_set_intr(struct vcpu *vcpu, uint32_t vector, bool level)
{
struct acrn_vlapic *vlapic;
int ret = 0;
if (vcpu == NULL) {
return -EINVAL;
}
/*
* According to section "Maskable Hardware Interrupts" in Intel SDM
* vectors 16 through 255 can be delivered through the local APIC.
*/
if (vector < 16U || vector > 255U) {
return -EINVAL;
}
vlapic = vcpu->arch_vcpu.vlapic;
if (vlapic_set_intr_ready(vlapic, vector, level) != 0) {
vcpu_make_request(vcpu, ACRN_REQUEST_EVENT);
} else {
ret = -ENODEV;
}
return ret;
}
int
vlapic_set_local_intr(struct vm *vm, uint16_t vcpu_id_arg, uint32_t vector)
{
struct acrn_vlapic *vlapic;
uint64_t dmask = 0UL;
int error;
uint16_t vcpu_id = vcpu_id_arg;
if ((vcpu_id != BROADCAST_CPU_ID) && (vcpu_id >= phys_cpu_num)) {
return -EINVAL;
}
if (vcpu_id == BROADCAST_CPU_ID) {
dmask = vm_active_cpus(vm);
} else {
bitmap_set_lock(vcpu_id, &dmask);
}
error = 0;
for (vcpu_id = ffs64(dmask); vcpu_id != INVALID_BIT_INDEX;
vcpu_id = ffs64(dmask)) {
bitmap_clear_lock(vcpu_id, &dmask);
vlapic = vm_lapic_from_vcpu_id(vm, vcpu_id);
error = vlapic_trigger_lvt(vlapic, vector);
if (error != 0) {
break;
}
}
return error;
}
int
vlapic_intr_msi(struct vm *vm, uint64_t addr, uint64_t msg)
{
uint32_t delmode, vec;
uint32_t dest;
bool phys, rh;
dev_dbg(ACRN_DBG_LAPIC, "lapic MSI addr: %#lx msg: %#lx", addr, msg);
if ((addr & MSI_ADDR_MASK) != MSI_ADDR_BASE) {
dev_dbg(ACRN_DBG_LAPIC, "lapic MSI invalid addr %#lx", addr);
return -1;
}
/*
* Extract the x86-specific fields from the MSI addr/msg
* params according to the Intel Arch spec, Vol3 Ch 10.
*
* The PCI specification does not support level triggered
* MSI/MSI-X so ignore trigger level in 'msg'.
*
* The 'dest' is interpreted as a logical APIC ID if both
* the Redirection Hint and Destination Mode are '1' and
* physical otherwise.
*/
dest = (uint32_t)(addr >> 12U) & 0xffU;
phys = ((addr & MSI_ADDR_LOG) != MSI_ADDR_LOG);
rh = ((addr & MSI_ADDR_RH) == MSI_ADDR_RH);
delmode = (uint32_t)msg & APIC_DELMODE_MASK;
vec = (uint32_t)msg & 0xffU;
dev_dbg(ACRN_DBG_LAPIC, "lapic MSI %s dest %#x, vec %u",
phys ? "physical" : "logical", dest, vec);
vlapic_deliver_intr(vm, LAPIC_TRIG_EDGE, dest, phys, delmode, vec, rh);
return 0;
}
static bool
is_x2apic_msr(uint32_t msr)
{
if (msr >= 0x800U && msr <= 0xBFFU) {
return true;
} else {
return false;
}
}
static uint32_t
x2apic_msr_to_regoff(uint32_t msr)
{
return (msr - 0x800U) << 4U;
}
bool
is_vlapic_msr(uint32_t msr)
{
if (is_x2apic_msr(msr) || (msr == MSR_IA32_APIC_BASE)) {
return true;
} else {
return false;
}
}
/* interrupt context */
static int vlapic_timer_expired(void *data)
{
struct vcpu *vcpu = (struct vcpu *)data;
struct acrn_vlapic *vlapic;
struct lapic_regs *lapic;
vlapic = vcpu->arch_vcpu.vlapic;
lapic = vlapic->apic_page;
/* inject vcpu timer interrupt if not masked */
if (!vlapic_lvtt_masked(vlapic)) {
vlapic_intr_edge(vcpu, lapic->lvt[APIC_LVT_TIMER].val & APIC_LVTT_VECTOR);
}
if (!vlapic_lvtt_period(vlapic)) {
vlapic->vtimer.timer.fire_tsc = 0UL;
}
return 0;
}
int
vlapic_rdmsr(struct vcpu *vcpu, uint32_t msr, uint64_t *rval)
{
int error = 0;
uint32_t offset;
struct acrn_vlapic *vlapic;
dev_dbg(ACRN_DBG_LAPIC, "cpu[%hu] rdmsr: %x", vcpu->vcpu_id, msr);
vlapic = vcpu->arch_vcpu.vlapic;
switch (msr) {
case MSR_IA32_APIC_BASE:
*rval = vlapic_get_apicbase(vlapic);
break;
case MSR_IA32_TSC_DEADLINE:
*rval = vlapic_get_tsc_deadline_msr(vlapic);
break;
default:
offset = x2apic_msr_to_regoff(msr);
error = vlapic_read(vlapic, 0, offset, rval);
break;
}
return error;
}
int
vlapic_wrmsr(struct vcpu *vcpu, uint32_t msr, uint64_t val)
{
int error = 0;
uint32_t offset;
struct acrn_vlapic *vlapic;
vlapic = vcpu->arch_vcpu.vlapic;
switch (msr) {
case MSR_IA32_APIC_BASE:
error = vlapic_set_apicbase(vlapic, val);
break;
case MSR_IA32_TSC_DEADLINE:
vlapic_set_tsc_deadline_msr(vlapic, val);
break;
default:
offset = x2apic_msr_to_regoff(msr);
error = vlapic_write(vlapic, 0, offset, val);
break;
}
dev_dbg(ACRN_DBG_LAPIC, "cpu[%hu] wrmsr: %x val=%#x",
vcpu->vcpu_id, msr, val);
return error;
}
int
vlapic_write_mmio_reg(struct vcpu *vcpu, uint64_t gpa, uint64_t wval,
uint8_t size)
{
int error;
uint32_t off;
struct acrn_vlapic *vlapic;
off = (uint32_t)(gpa - DEFAULT_APIC_BASE);
/*
* Memory mapped local apic accesses must be 4 bytes wide and
* aligned on a 16-byte boundary.
*/
if (size != 4U || (off & 0xfU) != 0U) {
return -EINVAL;
}
vlapic = vcpu->arch_vcpu.vlapic;
error = vlapic_write(vlapic, 1, off, wval);
return error;
}
int
vlapic_read_mmio_reg(struct vcpu *vcpu, uint64_t gpa, uint64_t *rval,
__unused uint8_t size)
{
int error;
uint32_t off;
struct acrn_vlapic *vlapic;
off = (uint32_t)(gpa - DEFAULT_APIC_BASE);
/*
* Memory mapped local apic accesses should be aligned on a
* 16-byte boundary. They are also suggested to be 4 bytes
* wide, alas not all OSes follow suggestions.
*/
off &= ~0x3U;
if ((off & 0xfU) != 0U) {
return -EINVAL;
}
vlapic = vcpu->arch_vcpu.vlapic;
error = vlapic_read(vlapic, 1, off, rval);
return error;
}
int vlapic_mmio_access_handler(struct vcpu *vcpu, struct io_request *io_req,
__unused void *handler_private_data)
{
struct mmio_request *mmio_req = &io_req->reqs.mmio;
uint64_t gpa = mmio_req->address;
int ret = 0;
/* Note all RW to LAPIC are 32-Bit in size */
ASSERT(mmio_req->size == 4UL, "All RW to LAPIC must be 32-bits in size");
if (mmio_req->direction == REQUEST_READ) {
ret = vlapic_read_mmio_reg(vcpu,
gpa,
&mmio_req->value,
mmio_req->size);
io_req->processed = REQ_STATE_SUCCESS;
} else if (mmio_req->direction == REQUEST_WRITE) {
ret = vlapic_write_mmio_reg(vcpu,
gpa,
mmio_req->value,
mmio_req->size);
io_req->processed = REQ_STATE_SUCCESS;
} else {
/* Can never happen due to the range of mmio_req->direction. */
}
return ret;
}
int vlapic_create(struct vcpu *vcpu)
{
void *apic_page = alloc_page();
struct acrn_vlapic *vlapic = calloc(1U, sizeof(struct acrn_vlapic));
ASSERT(vlapic != NULL, "vlapic allocate failed");
ASSERT(apic_page != NULL, "apic reg page allocate failed");
(void)memset((void *)apic_page, 0U, CPU_PAGE_SIZE);
vlapic->vm = vcpu->vm;
vlapic->vcpu = vcpu;
vlapic->apic_page = (struct lapic_regs *)apic_page;
if (is_vapic_supported()) {
if (is_vapic_intr_delivery_supported()) {
vlapic->ops.apicv_set_intr_ready =
apicv_set_intr_ready;
vlapic->ops.apicv_pending_intr =
apicv_pending_intr;
vlapic->ops.apicv_set_tmr = apicv_set_tmr;
vlapic->ops.apicv_batch_set_tmr =
apicv_batch_set_tmr;
vlapic->pir_desc = (struct vlapic_pir_desc *)(&(vlapic->pir));
}
if (is_vcpu_bsp(vcpu)) {
ept_mr_add(vcpu->vm,
apicv_get_apic_access_addr(vcpu->vm),
DEFAULT_APIC_BASE, CPU_PAGE_SIZE,
IA32E_EPT_W_BIT | IA32E_EPT_R_BIT |
IA32E_EPT_UNCACHED);
}
} else {
/*No APICv support*/
if (register_mmio_emulation_handler(vcpu->vm,
vlapic_mmio_access_handler,
(uint64_t)DEFAULT_APIC_BASE,
(uint64_t)DEFAULT_APIC_BASE +
CPU_PAGE_SIZE,
(void *) 0) != 0) {
return -1;
}
}
vcpu->arch_vcpu.vlapic = vlapic;
vlapic_init(vlapic);
return 0;
}
void vlapic_free(struct vcpu *vcpu)
{
struct acrn_vlapic *vlapic = NULL;
void *apic_page = NULL;
if (vcpu == NULL) {
return;
}
vlapic = vcpu->arch_vcpu.vlapic;
if (vlapic == NULL) {
return;
}
del_timer(&vlapic->vtimer.timer);
if (!is_vapic_supported()) {
unregister_mmio_emulation_handler(vcpu->vm,
(uint64_t)DEFAULT_APIC_BASE,
(uint64_t)DEFAULT_APIC_BASE + CPU_PAGE_SIZE);
}
apic_page = vlapic->apic_page;
if (apic_page == NULL) {
free(vlapic);
return;
}
free(apic_page);
free(vlapic);
}
/**
* APIC-v functions
* **/
static int
apicv_set_intr_ready(struct acrn_vlapic *vlapic, uint32_t vector, __unused bool level)
{
struct vlapic_pir_desc *pir_desc;
uint64_t mask;
uint32_t idx;
int32_t notify;
pir_desc = vlapic->pir_desc;
idx = vector / 64U;
mask = 1UL << (vector % 64U);
atomic_set64(&pir_desc->pir[idx], mask);
notify = (atomic_cmpxchg64(&pir_desc->pending, 0UL, 1UL) == 0UL) ? 1 : 0;
return notify;
}
static int
apicv_pending_intr(struct acrn_vlapic *vlapic, __unused uint32_t *vecptr)
{
struct vlapic_pir_desc *pir_desc;
struct lapic_regs *lapic;
uint64_t pending, pirval;
uint32_t i, ppr, vpr;
pir_desc = vlapic->pir_desc;
pending = atomic_load64(&pir_desc->pending);
if (pending == 0U) {
return 0;
}
lapic = vlapic->apic_page;
ppr = lapic->ppr & 0xF0U;
if (ppr == 0U) {
return 1;
}
/* i ranges effectively from 3 to 0 */
for (i = 4U; i > 0U; ) {
i--;
pirval = pir_desc->pir[i];
if (pirval != 0U) {
vpr = (((i * 64U) + (uint32_t)fls64(pirval)) & 0xF0U);
return (vpr > ppr) ? 1 : 0;
}
}
return 0;
}
static void
apicv_set_tmr(__unused struct acrn_vlapic *vlapic, uint32_t vector, bool level)
{
uint64_t mask, val;
uint32_t field;
mask = 1UL << (vector % 64U);
field = VMX_EOI_EXIT(vector);
val = exec_vmread64(field);
if (level) {
val |= mask;
} else {
val &= ~mask;
}
exec_vmwrite64(field, val);
}
/* Update the VMX_EOI_EXIT according to related tmr */
#define EOI_STEP_LEN (64U)
#define TMR_STEP_LEN (32U)
static void
apicv_batch_set_tmr(struct acrn_vlapic *vlapic)
{
struct lapic_regs *lapic = vlapic->apic_page;
uint64_t val;
struct lapic_reg *ptr;
uint32_t s, e;
ptr = &lapic->tmr[0];
s = 0U;
e = 256U;
while (s < e) {
val = ptr[(s/TMR_STEP_LEN) + 1].val;
val <<= TMR_STEP_LEN;
val |= ptr[s/TMR_STEP_LEN].val;
exec_vmwrite64(VMX_EOI_EXIT(s), val);
s += EOI_STEP_LEN;
}
}
/**
*APIC-v: Get the HPA to APIC-access page
* **/
uint64_t
apicv_get_apic_access_addr(__unused struct vm *vm)
{
if (apicv_apic_access_addr == NULL) {
apicv_apic_access_addr = alloc_page();
ASSERT(apicv_apic_access_addr != NULL,
"apicv allocate failed.");
(void)memset((void *)apicv_apic_access_addr, 0U, CPU_PAGE_SIZE);
}
return HVA2HPA(apicv_apic_access_addr);
}
/**
*APIC-v: Get the HPA to virtualized APIC registers page
* **/
uint64_t
apicv_get_apic_page_addr(struct acrn_vlapic *vlapic)
{
return HVA2HPA(vlapic->apic_page);
}
/*
* Transfer the pending interrupts in the PIR descriptor to the IRR
* in the virtual APIC page.
*/
void
apicv_inject_pir(struct acrn_vlapic *vlapic)
{
struct vlapic_pir_desc *pir_desc;
struct lapic_regs *lapic;
uint64_t val, pirval;
uint16_t rvi, pirbase = 0U, i;
uint16_t intr_status_old, intr_status_new;
struct lapic_reg *irr = NULL;
pir_desc = vlapic->pir_desc;
if (atomic_cmpxchg64(&pir_desc->pending, 1UL, 0UL) != 1UL) {
return;
}
pirval = 0UL;
lapic = vlapic->apic_page;
irr = &lapic->irr[0];
for (i = 0U; i < 4U; i++) {
val = atomic_readandclear64(&pir_desc->pir[i]);
if (val != 0UL) {
irr[i * 2U].val |= (uint32_t)val;
irr[(i * 2U) + 1U].val |= (uint32_t)(val >> 32);
pirbase = 64U*i;
pirval = val;
}
}
/*
* Update RVI so the processor can evaluate pending virtual
* interrupts on VM-entry.
*
* It is possible for pirval to be 0 here, even though the
* pending bit has been set. The scenario is:
* CPU-Y is sending a posted interrupt to CPU-X, which
* is running a guest and processing posted interrupts in h/w.
* CPU-X will eventually exit and the state seen in s/w is
* the pending bit set, but no PIR bits set.
*
* CPU-X CPU-Y
* (vm running) (host running)
* rx posted interrupt
* CLEAR pending bit
* SET PIR bit
* READ/CLEAR PIR bits
* SET pending bit
* (vm exit)
* pending bit set, PIR 0
*/
if (pirval != 0UL) {
rvi = pirbase + fls64(pirval);
intr_status_old = 0xFFFFU &
exec_vmread16(VMX_GUEST_INTR_STATUS);
intr_status_new = (intr_status_old & 0xFF00U) | rvi;
if (intr_status_new > intr_status_old) {
exec_vmwrite16(VMX_GUEST_INTR_STATUS,
intr_status_new);
}
}
}
int apic_access_vmexit_handler(struct vcpu *vcpu)
{
int err = 0;
uint32_t offset = 0U;
uint64_t qual, access_type;
struct acrn_vlapic *vlapic;
struct mmio_request *mmio = &vcpu->req.reqs.mmio;
qual = vcpu->arch_vcpu.exit_qualification;
access_type = APIC_ACCESS_TYPE(qual);
/*parse offset if linear access*/
if (access_type <= 3UL) {
offset = (uint32_t)APIC_ACCESS_OFFSET(qual);
}
vlapic = vcpu->arch_vcpu.vlapic;
err = decode_instruction(vcpu);
/* apic access should already fetched instruction, decode_instruction
* will not trigger #PF, so if it failed, just return error_no
*/
if (err < 0) {
return err;
}
if (access_type == 1UL) {
if (emulate_instruction(vcpu) == 0) {
err = vlapic_write(vlapic, 1, offset, mmio->value);
}
} else if (access_type == 0UL) {
err = vlapic_read(vlapic, 1, offset, &mmio->value);
if (err < 0) {
return err;
}
err = emulate_instruction(vcpu);
} else {
pr_err("Unhandled APIC access type: %lu\n", access_type);
err = -EINVAL;
}
TRACE_2L(TRACE_VMEXIT_APICV_ACCESS, qual, (uint64_t)vlapic);
return err;
}
int veoi_vmexit_handler(struct vcpu *vcpu)
{
struct acrn_vlapic *vlapic = NULL;
uint32_t vector;
struct lapic_regs *lapic;
struct lapic_reg *tmrptr;
uint32_t idx, mask;
vcpu_retain_rip(vcpu);
vlapic = vcpu->arch_vcpu.vlapic;
lapic = vlapic->apic_page;
vector = (uint32_t)(vcpu->arch_vcpu.exit_qualification & 0xFFUL);
tmrptr = &lapic->tmr[0];
idx = vector / 32U;
mask = 1U << (vector % 32U);
if ((tmrptr[idx].val & mask) != 0U) {
/* hook to vIOAPIC */
vioapic_process_eoi(vlapic->vm, vector);
}
TRACE_2L(TRACE_VMEXIT_APICV_VIRT_EOI, vector, 0UL);
return 0;
}
int apic_write_vmexit_handler(struct vcpu *vcpu)
{
uint64_t qual;
int error, handled;
uint32_t offset;
struct acrn_vlapic *vlapic = NULL;
qual = vcpu->arch_vcpu.exit_qualification;
offset = (uint32_t)(qual & 0xFFFUL);
handled = 1;
vcpu_retain_rip(vcpu);
vlapic = vcpu->arch_vcpu.vlapic;
switch (offset) {
case APIC_OFFSET_ID:
vlapic_id_write_handler(vlapic);
break;
case APIC_OFFSET_EOI:
vlapic_process_eoi(vlapic);
break;
case APIC_OFFSET_LDR:
vlapic_ldr_write_handler(vlapic);
break;
case APIC_OFFSET_DFR:
vlapic_dfr_write_handler(vlapic);
break;
case APIC_OFFSET_SVR:
vlapic_svr_write_handler(vlapic);
break;
case APIC_OFFSET_ESR:
vlapic_esr_write_handler(vlapic);
break;
case APIC_OFFSET_ICR_LOW:
error = vlapic_icrlo_write_handler(vlapic);
if (error != 0) {
handled = 0;
}
break;
case APIC_OFFSET_CMCI_LVT:
case APIC_OFFSET_TIMER_LVT:
case APIC_OFFSET_THERM_LVT:
case APIC_OFFSET_PERF_LVT:
case APIC_OFFSET_LINT0_LVT:
case APIC_OFFSET_LINT1_LVT:
case APIC_OFFSET_ERROR_LVT:
vlapic_lvt_write_handler(vlapic, offset);
break;
case APIC_OFFSET_TIMER_ICR:
vlapic_icrtmr_write_handler(vlapic);
break;
case APIC_OFFSET_TIMER_DCR:
vlapic_dcr_write_handler(vlapic);
break;
default:
handled = 0;
pr_err("Unhandled APIC-Write, offset:0x%x", offset);
break;
}
TRACE_2L(TRACE_VMEXIT_APICV_WRITE, offset, 0UL);
return handled;
}
int tpr_below_threshold_vmexit_handler(__unused struct vcpu *vcpu)
{
pr_err("Unhandled %s.", __func__);
return 0;
}