acrn-hypervisor/hypervisor/arch/x86/guest/instr_emul.c
Kaige Fu c27e25052b HV: instr_emul: Move op_byte from vie_op to instr_emul_vie
one/two_byte_opcodes is indexed by op_byte. So vie_op->op_byte is unnecessary.
This patch remove it and add a new variable opcode to instr_emul_vie.

Signed-off-by: Kaige Fu <kaige.fu@intel.com>
Acked-by: Anthony Xu <anthony.xu@intel.com>
2018-08-03 13:05:12 +08:00

2139 lines
47 KiB
C

/*-
* Copyright (c) 2012 Sandvine, Inc.
* Copyright (c) 2012 NetApp, Inc.
* Copyright (c) 2017 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <hypervisor.h>
#include "instr_emul_wrapper.h"
#include "instr_emul.h"
/* struct vie_op.op_type */
#define VIE_OP_TYPE_NONE 0U
#define VIE_OP_TYPE_MOV 1U
#define VIE_OP_TYPE_MOVSX 2U
#define VIE_OP_TYPE_MOVZX 3U
#define VIE_OP_TYPE_AND 4U
#define VIE_OP_TYPE_OR 5U
#define VIE_OP_TYPE_SUB 6U
#define VIE_OP_TYPE_TWO_BYTE 7U
#define VIE_OP_TYPE_PUSH 8U
#define VIE_OP_TYPE_CMP 9U
#define VIE_OP_TYPE_POP 10U
#define VIE_OP_TYPE_MOVS 11U
#define VIE_OP_TYPE_GROUP1 12U
#define VIE_OP_TYPE_STOS 13U
#define VIE_OP_TYPE_BITTEST 14U
#define VIE_OP_TYPE_TEST 15U
/* struct vie_op.op_flags */
#define VIE_OP_F_IMM (1U << 0) /* 16/32-bit immediate operand */
#define VIE_OP_F_IMM8 (1U << 1) /* 8-bit immediate operand */
#define VIE_OP_F_MOFFSET (1U << 2) /* 16/32/64-bit immediate moffset */
#define VIE_OP_F_NO_MODRM (1U << 3)
#define VIE_OP_F_NO_GLA_VERIFICATION (1U << 4)
static const struct instr_emul_vie_op two_byte_opcodes[256] = {
[0xB6] = {
.op_type = VIE_OP_TYPE_MOVZX,
},
[0xB7] = {
.op_type = VIE_OP_TYPE_MOVZX,
},
[0xBA] = {
.op_type = VIE_OP_TYPE_BITTEST,
.op_flags = VIE_OP_F_IMM8,
},
[0xBE] = {
.op_type = VIE_OP_TYPE_MOVSX,
},
};
static const struct instr_emul_vie_op one_byte_opcodes[256] = {
[0x0F] = {
.op_type = VIE_OP_TYPE_TWO_BYTE
},
[0x2B] = {
.op_type = VIE_OP_TYPE_SUB,
},
[0x39] = {
.op_type = VIE_OP_TYPE_CMP,
},
[0x3B] = {
.op_type = VIE_OP_TYPE_CMP,
},
[0x88] = {
.op_type = VIE_OP_TYPE_MOV,
},
[0x89] = {
.op_type = VIE_OP_TYPE_MOV,
},
[0x8A] = {
.op_type = VIE_OP_TYPE_MOV,
},
[0x8B] = {
.op_type = VIE_OP_TYPE_MOV,
},
[0xA1] = {
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
},
[0xA3] = {
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
},
[0xA4] = {
.op_type = VIE_OP_TYPE_MOVS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xA5] = {
.op_type = VIE_OP_TYPE_MOVS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xAA] = {
.op_type = VIE_OP_TYPE_STOS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xAB] = {
.op_type = VIE_OP_TYPE_STOS,
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
},
[0xC6] = {
/* XXX Group 11 extended opcode - not just MOV */
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_IMM8,
},
[0xC7] = {
.op_type = VIE_OP_TYPE_MOV,
.op_flags = VIE_OP_F_IMM,
},
[0x23] = {
.op_type = VIE_OP_TYPE_AND,
},
[0x80] = {
/* Group 1 extended opcode */
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM8,
},
[0x81] = {
/* Group 1 extended opcode */
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM,
},
[0x83] = {
/* Group 1 extended opcode */
.op_type = VIE_OP_TYPE_GROUP1,
.op_flags = VIE_OP_F_IMM8,
},
[0x84] = {
.op_type = VIE_OP_TYPE_TEST,
},
[0x85] = {
.op_type = VIE_OP_TYPE_TEST,
},
[0x08] = {
.op_type = VIE_OP_TYPE_OR,
},
[0x09] = {
.op_type = VIE_OP_TYPE_OR,
},
[0x8F] = {
/* XXX Group 1A extended opcode - not just POP */
.op_type = VIE_OP_TYPE_POP,
},
[0xFF] = {
/* XXX Group 5 extended opcode - not just PUSH */
.op_type = VIE_OP_TYPE_PUSH,
}
};
/* struct vie.mod */
#define VIE_MOD_INDIRECT 0U
#define VIE_MOD_INDIRECT_DISP8 1U
#define VIE_MOD_INDIRECT_DISP32 2U
#define VIE_MOD_DIRECT 3U
/* struct vie.rm */
#define VIE_RM_SIB 4U
#define VIE_RM_DISP32 5U
#define GB (1024 * 1024 * 1024)
static uint64_t size2mask[9] = {
[1] = (1UL << 8U) - 1UL,
[2] = (1UL << 16U) - 1UL,
[4] = (1UL << 32U) - 1UL,
[8] = ~0UL,
};
static void
vie_calc_bytereg(struct instr_emul_vie *vie, enum cpu_reg_name *reg, int *lhbr)
{
*lhbr = 0;
*reg = vie->reg;
/*
* 64-bit mode imposes limitations on accessing legacy high byte
* registers (lhbr).
*
* The legacy high-byte registers cannot be addressed if the REX
* prefix is present. In this case the values 4, 5, 6 and 7 of the
* 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
*
* If the REX prefix is not present then the values 4, 5, 6 and 7
* of the 'ModRM:reg' field address the legacy high-byte registers,
* %ah, %ch, %dh and %bh respectively.
*/
if (vie->rex_present == 0U) {
if ((vie->reg & 0x4U) != 0U) {
*lhbr = 1;
*reg = vie->reg & 0x3U;
}
}
}
static int
vie_read_bytereg(struct vcpu *vcpu, struct instr_emul_vie *vie, uint8_t *rval)
{
uint64_t val;
int error, lhbr;
enum cpu_reg_name reg;
vie_calc_bytereg(vie, &reg, &lhbr);
error = vm_get_register(vcpu, reg, &val);
/*
* To obtain the value of a legacy high byte register shift the
* base register right by 8 bits (%ah = %rax >> 8).
*/
if (lhbr != 0) {
*rval = (uint8_t)(val >> 8);
} else {
*rval = (uint8_t)val;
}
return error;
}
static int
vie_write_bytereg(struct vcpu *vcpu, struct instr_emul_vie *vie, uint8_t byte)
{
uint64_t origval, val, mask;
int error, lhbr;
enum cpu_reg_name reg;
vie_calc_bytereg(vie, &reg, &lhbr);
error = vm_get_register(vcpu, reg, &origval);
if (error == 0) {
val = byte;
mask = 0xffU;
if (lhbr != 0) {
/*
* Shift left by 8 to store 'byte' in a legacy high
* byte register.
*/
val <<= 8;
mask <<= 8;
}
val |= origval & ~mask;
error = vm_set_register(vcpu, reg, val);
}
return error;
}
int
vie_update_register(struct vcpu *vcpu, enum cpu_reg_name reg,
uint64_t val_arg, uint8_t size)
{
int error;
uint64_t origval;
uint64_t val = val_arg;
switch (size) {
case 1U:
case 2U:
error = vm_get_register(vcpu, reg, &origval);
if (error != 0) {
return error;
}
val &= size2mask[size];
val |= origval & ~size2mask[size];
break;
case 4U:
val &= 0xffffffffUL;
break;
case 8U:
break;
default:
return -EINVAL;
}
error = vm_set_register(vcpu, reg, val);
ASSERT(error == 0, "%s: Error (%d) happens when update reg",
__func__, error);
return error;
}
#define RFLAGS_STATUS_BITS (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
static int vie_update_rflags(struct vcpu *vcpu, uint64_t rflags2, uint64_t psl)
{
int error;
uint8_t size;
uint64_t rflags;
error = vm_get_register(vcpu, CPU_REG_RFLAGS, &rflags);
if (error != 0) {
return error;
}
rflags &= ~RFLAGS_STATUS_BITS;
rflags |= rflags2 & psl;
size = 8U;
error = vie_update_register(vcpu, CPU_REG_RFLAGS, rflags, size);
return error;
}
/*
* Return the status flags that would result from doing (x - y).
*/
#define build_getcc(name, type, x, y) \
static uint64_t name(type x, type y) \
{ \
uint64_t rflags; \
\
__asm __volatile("sub %2,%1; pushfq; popq %0" : \
"=r" (rflags), "+r" (x) : "m" (y)); \
return rflags; \
}
build_getcc(getcc8, uint8_t, x, y)
build_getcc(getcc16, uint16_t, x, y)
build_getcc(getcc32, uint32_t, x, y)
build_getcc(getcc64, uint64_t, x, y)
static uint64_t
getcc(uint8_t opsize, uint64_t x, uint64_t y)
{
ASSERT(opsize == 1U || opsize == 2U || opsize == 4U || opsize == 8U,
"getcc: invalid operand size %hhu", opsize);
if (opsize == 1U) {
return getcc8((uint8_t)x, (uint8_t)y);
} else if (opsize == 2U) {
return getcc16((uint16_t)x, (uint16_t)y);
} else if (opsize == 4U) {
return getcc32((uint32_t)x, (uint32_t)y);
} else {
return getcc64(x, y);
}
}
static int
emulate_mov(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite,
void *arg)
{
int error;
uint8_t size;
enum cpu_reg_name reg;
uint8_t byte;
uint64_t val;
size = vie->opsize;
error = -EINVAL;
switch (vie->opcode) {
case 0x88U:
/*
* MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
* 88/r: mov r/m8, r8
* REX + 88/r: mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
*/
size = 1U; /* override for byte operation */
error = vie_read_bytereg(vcpu, vie, &byte);
if (error == 0) {
error = memwrite(vcpu, gpa, byte, size,
arg);
}
break;
case 0x89U:
/*
* MOV from reg (ModRM:reg) to mem (ModRM:r/m)
* 89/r: mov r/m16, r16
* 89/r: mov r/m32, r32
* REX.W + 89/r mov r/m64, r64
*/
reg = vie->reg;
error = vm_get_register(vcpu, reg, &val);
if (error == 0) {
val &= size2mask[size];
error = memwrite(vcpu, gpa, val, size,
arg);
}
break;
case 0x8AU:
/*
* MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
* 8A/r: mov r8, r/m8
* REX + 8A/r: mov r8, r/m8
*/
size = 1U; /* override for byte operation */
error = memread(vcpu, gpa, &val, size, arg);
if (error == 0) {
error = vie_write_bytereg(vcpu, vie, (uint8_t)val);
}
break;
case 0x8BU:
/*
* MOV from mem (ModRM:r/m) to reg (ModRM:reg)
* 8B/r: mov r16, r/m16
* 8B/r: mov r32, r/m32
* REX.W 8B/r: mov r64, r/m64
*/
error = memread(vcpu, gpa, &val, size, arg);
if (error == 0) {
reg = vie->reg;
error = vie_update_register(vcpu, reg,
val, size);
}
break;
case 0xA1U:
/*
* MOV from seg:moffset to AX/EAX/RAX
* A1: mov AX, moffs16
* A1: mov EAX, moffs32
* REX.W + A1: mov RAX, moffs64
*/
error = memread(vcpu, gpa, &val, size, arg);
if (error == 0) {
reg = CPU_REG_RAX;
error = vie_update_register(vcpu, reg,
val, size);
}
break;
case 0xA3U:
/*
* MOV from AX/EAX/RAX to seg:moffset
* A3: mov moffs16, AX
* A3: mov moffs32, EAX
* REX.W + A3: mov moffs64, RAX
*/
error = vm_get_register(vcpu, CPU_REG_RAX,
&val);
if (error == 0) {
val &= size2mask[size];
error = memwrite(vcpu, gpa, val, size,
arg);
}
break;
case 0xC6U:
/*
* MOV from imm8 to mem (ModRM:r/m)
* C6/0 mov r/m8, imm8
* REX + C6/0 mov r/m8, imm8
*/
size = 1U; /* override for byte operation */
error = memwrite(vcpu, gpa, vie->immediate, size,
arg);
break;
case 0xC7U:
/*
* MOV from imm16/imm32 to mem (ModRM:r/m)
* C7/0 mov r/m16, imm16
* C7/0 mov r/m32, imm32
* REX.W + C7/0 mov r/m64, imm32
* (sign-extended to 64-bits)
*/
val = (uint64_t)vie->immediate & size2mask[size];
error = memwrite(vcpu, gpa, val, size, arg);
break;
default:
break;
}
return error;
}
static int
emulate_movx(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *arg)
{
int error;
uint8_t size;
enum cpu_reg_name reg;
uint64_t val;
size = vie->opsize;
error = -EINVAL;
switch (vie->opcode) {
case 0xB6U:
/*
* MOV and zero extend byte from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F B6/r movzx r16, r/m8
* 0F B6/r movzx r32, r/m8
* REX.W + 0F B6/r movzx r64, r/m8
*/
/* get the first operand */
error = memread(vcpu, gpa, &val, 1U, arg);
if (error != 0) {
break;
}
/* get the second operand */
reg = vie->reg;
/* zero-extend byte */
val = (uint8_t)val;
/* write the result */
error = vie_update_register(vcpu, reg, val, size);
break;
case 0xB7U:
/*
* MOV and zero extend word from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F B7/r movzx r32, r/m16
* REX.W + 0F B7/r movzx r64, r/m16
*/
error = memread(vcpu, gpa, &val, 2U, arg);
if (error != 0) {
return error;
}
reg = vie->reg;
/* zero-extend word */
val = (uint16_t)val;
error = vie_update_register(vcpu, reg, val, size);
break;
case 0xBEU:
/*
* MOV and sign extend byte from mem (ModRM:r/m) to
* reg (ModRM:reg).
*
* 0F BE/r movsx r16, r/m8
* 0F BE/r movsx r32, r/m8
* REX.W + 0F BE/r movsx r64, r/m8
*/
/* get the first operand */
error = memread(vcpu, gpa, &val, 1U, arg);
if (error != 0) {
break;
}
/* get the second operand */
reg = vie->reg;
/* sign extend byte */
val = (int8_t)val;
/* write the result */
error = vie_update_register(vcpu, reg, val, size);
break;
default:
break;
}
return error;
}
/*
* Helper function to calculate and validate a linear address.
*/
static int
get_gla(struct vcpu *vcpu, __unused struct instr_emul_vie *vie,
struct vm_guest_paging *paging,
uint8_t opsize, uint8_t addrsize, uint32_t prot, enum cpu_reg_name seg,
enum cpu_reg_name gpr, uint64_t *gla, int *fault)
{
struct seg_desc desc;
uint64_t cr0, val, rflags;
int error;
error = vm_get_register(vcpu, CPU_REG_CR0, &cr0);
error |= vm_get_register(vcpu, CPU_REG_RFLAGS, &rflags);
error |= vm_get_seg_desc(vcpu, seg, &desc);
error |= vm_get_register(vcpu, gpr, &val);
if (error) {
pr_err("%s: error(%d) happens when getting cr0/rflags/segment"
"desc/gpr", __func__, error);
return -1;
}
if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
addrsize, prot, gla) != 0) {
if (seg == CPU_REG_SS) {
/*vm_inject_ss(vcpu, 0);*/
pr_err("TODO: inject ss exception");
} else {
/*vm_inject_gp(vcpu);*/
pr_err("TODO: inject gp exception");
}
goto guest_fault;
}
if (vie_canonical_check(paging->cpu_mode, *gla) != 0) {
if (seg == CPU_REG_SS) {
/*vm_inject_ss(vcpu, 0);*/
pr_err("TODO: inject ss exception");
} else {
/*vm_inject_gp(vcpu);*/
pr_err("TODO: inject gp exception");
}
goto guest_fault;
}
if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla) != 0) {
/*vm_inject_ac(vcpu, 0);*/
pr_err("TODO: inject ac exception");
goto guest_fault;
}
*fault = 0;
return 0;
guest_fault:
*fault = 1;
return 0;
}
static int
emulate_movs(struct vcpu *vcpu, __unused uint64_t gpa, struct instr_emul_vie *vie,
struct vm_guest_paging *paging,
__unused mem_region_read_t memread,
__unused mem_region_write_t memwrite,
__unused void *arg)
{
uint64_t dstaddr, srcaddr;
uint64_t rcx, rdi, rsi, rflags;
int error, fault, repeat;
uint8_t opsize;
enum cpu_reg_name seg;
opsize = (vie->opcode == 0xA4U) ? 1U : vie->opsize;
error = 0;
/*
* XXX although the MOVS instruction is only supposed to be used with
* the "rep" prefix some guests like FreeBSD will use "repnz" instead.
*
* Empirically the "repnz" prefix has identical behavior to "rep"
* and the zero flag does not make a difference.
*/
repeat = vie->repz_present | vie->repnz_present;
if (repeat != 0) {
error = vm_get_register(vcpu, CPU_REG_RCX, &rcx);
/*
* The count register is %rcx, %ecx or %cx depending on the
* address size of the instruction.
*/
if ((rcx & size2mask[vie->addrsize]) == 0UL) {
error = 0;
goto done;
}
}
seg = (vie->seg_override != 0U) ? (vie->segment_register) : CPU_REG_DS;
error = get_gla(vcpu, vie, paging, opsize, vie->addrsize,
PROT_READ, seg, CPU_REG_RSI, &srcaddr, &fault);
if ((error != 0) || (fault != 0)) {
goto done;
}
error = get_gla(vcpu, vie, paging, opsize, vie->addrsize,
PROT_WRITE, CPU_REG_ES, CPU_REG_RDI, &dstaddr,
&fault);
if ((error != 0) || (fault != 0)) {
goto done;
}
(void)memcpy_s((void *)dstaddr, 16U, (void *)srcaddr, opsize);
error = vm_get_register(vcpu, CPU_REG_RSI, &rsi);
error = vm_get_register(vcpu, CPU_REG_RDI, &rdi);
error = vm_get_register(vcpu, CPU_REG_RFLAGS, &rflags);
if ((rflags & PSL_D) != 0U) {
rsi -= opsize;
rdi -= opsize;
} else {
rsi += opsize;
rdi += opsize;
}
error = vie_update_register(vcpu, CPU_REG_RSI, rsi,
vie->addrsize);
error = vie_update_register(vcpu, CPU_REG_RDI, rdi,
vie->addrsize);
if (repeat != 0) {
rcx = rcx - 1;
error = vie_update_register(vcpu, CPU_REG_RCX,
rcx, vie->addrsize);
/*
* Repeat the instruction if the count register is not zero.
*/
if ((rcx & size2mask[vie->addrsize]) != 0UL) {
vcpu_retain_rip(vcpu);
}
}
done:
ASSERT(error == 0, "%s: unexpected error %d", __func__, error);
return error;
}
static int
emulate_stos(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
__unused struct vm_guest_paging *paging,
__unused mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error, repeat;
uint8_t opsize;
uint64_t val;
uint64_t rcx, rdi, rflags;
opsize = (vie->opcode == 0xAAU) ? 1U : vie->opsize;
repeat = vie->repz_present | vie->repnz_present;
if (repeat != 0) {
error = vm_get_register(vcpu, CPU_REG_RCX, &rcx);
/*
* The count register is %rcx, %ecx or %cx depending on the
* address size of the instruction.
*/
if ((rcx & size2mask[vie->addrsize]) == 0UL) {
return 0;
}
}
error = vm_get_register(vcpu, CPU_REG_RAX, &val);
error = memwrite(vcpu, gpa, val, opsize, arg);
if (error != 0) {
return error;
}
error = vm_get_register(vcpu, CPU_REG_RDI, &rdi);
error = vm_get_register(vcpu, CPU_REG_RFLAGS, &rflags);
if ((rflags & PSL_D) != 0U) {
rdi -= opsize;
} else {
rdi += opsize;
}
error = vie_update_register(vcpu, CPU_REG_RDI, rdi,
vie->addrsize);
if (repeat != 0) {
rcx = rcx - 1;
error = vie_update_register(vcpu, CPU_REG_RCX,
rcx, vie->addrsize);
/*
* Repeat the instruction if the count register is not zero.
*/
if ((rcx & size2mask[vie->addrsize]) != 0UL) {
vcpu_retain_rip(vcpu);
}
}
return 0;
}
static int
emulate_test(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *arg)
{
int error;
uint8_t size;
enum cpu_reg_name reg;
uint64_t result, rflags2, val1, val2;
size = vie->opsize;
error = -EINVAL;
switch (vie->opcode) {
case 0x84U:
/*
* 84/r test r8, r/m8
*/
size = 1U; /*override size for 8-bit operation*/
/* fallthrough */
case 0x85U:
/*
* AND reg (ModRM:reg) and mem (ModRM:r/m) and discard
* the result.
*
*
* 85/r test r16, r/m16
* 85/r test r32, r/m32
* REX.W + 85/r test r64, r/m64
*/
/* get the first operand */
reg = vie->reg;
error = vm_get_register(vcpu, reg, &val1);
if (error != 0) {
break;
}
/* get the second operand */
error = memread(vcpu, gpa, &val2, size, arg);
if (error != 0) {
break;
}
/* perform the operation and write the result */
result = val1 & val2;
break;
default:
break;
}
if (error != 0) {
return error;
}
/*
* OF and CF are cleared; the SF, ZF and PF flags are set according
* to the result; AF is undefined.
*
* The updated status flags are obtained by subtracting 0 from 'result'.
*/
rflags2 = getcc(size, result, 0UL);
error = vie_update_rflags(vcpu, rflags2, PSL_PF | PSL_Z | PSL_N);
return error;
}
static int
emulate_and(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite,
void *arg)
{
int error;
uint8_t size;
enum cpu_reg_name reg;
uint64_t result, rflags2, val1, val2;
size = vie->opsize;
error = -EINVAL;
switch (vie->opcode) {
case 0x23U:
/*
* AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
* result in reg.
*
* 23/r and r16, r/m16
* 23/r and r32, r/m32
* REX.W + 23/r and r64, r/m64
*/
/* get the first operand */
reg = vie->reg;
error = vm_get_register(vcpu, reg, &val1);
if (error != 0) {
break;
}
/* get the second operand */
error = memread(vcpu, gpa, &val2, size, arg);
if (error != 0) {
break;
}
/* perform the operation and write the result */
result = val1 & val2;
error = vie_update_register(vcpu, reg, result,
size);
break;
case 0x81U:
case 0x83U:
/*
* AND mem (ModRM:r/m) with immediate and store the
* result in mem.
*
* 81 /4 and r/m16, imm16
* 81 /4 and r/m32, imm32
* REX.W + 81 /4 and r/m64, imm32 sign-extended to 64
*
* 83 /4 and r/m16, imm8 sign-extended to 16
* 83 /4 and r/m32, imm8 sign-extended to 32
* REX.W + 83/4 and r/m64, imm8 sign-extended to 64
*/
/* get the first operand */
error = memread(vcpu, gpa, &val1, size, arg);
if (error != 0) {
break;
}
/*
* perform the operation with the pre-fetched immediate
* operand and write the result
*/
result = val1 & vie->immediate;
error = memwrite(vcpu, gpa, result, size, arg);
break;
default:
break;
}
if (error != 0) {
return error;
}
/*
* OF and CF are cleared; the SF, ZF and PF flags are set according
* to the result; AF is undefined.
*
* The updated status flags are obtained by subtracting 0 from 'result'.
*/
rflags2 = getcc(size, result, 0UL);
error = vie_update_rflags(vcpu, rflags2, PSL_PF | PSL_Z | PSL_N);
return error;
}
static int
emulate_or(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
mem_region_read_t memread, mem_region_write_t memwrite,
void *arg)
{
int error;
uint8_t size;
enum cpu_reg_name reg;
uint64_t val1, val2, result, rflags2;
size = vie->opsize;
error = -EINVAL;
switch (vie->opcode) {
case 0x81U:
case 0x83U:
/*
* OR mem (ModRM:r/m) with immediate and store the
* result in mem.
*
* 81 /1 or r/m16, imm16
* 81 /1 or r/m32, imm32
* REX.W + 81 /1 or r/m64, imm32 sign-extended to
* 64
*
* 83 /1 or r/m16, imm8 sign-extended to
* 16
* 83 /1 or r/m32, imm8 sign-extended to
* 32
* REX.W + 83/1 or r/m64, imm8 sign-extended to
* 64
*/
/* get the first operand */
error = memread(vcpu, gpa, &val1, size, arg);
if (error != 0) {
break;
}
/*
* perform the operation with the pre-fetched immediate
* operand and write the result
*/
result = val1 | (uint64_t)vie->immediate;
error = memwrite(vcpu, gpa, result, size, arg);
break;
case 0x09U:
/*
* OR mem (ModRM:r/m) with reg (ModRM:reg) and store the
* result in mem.
* 09/r: OR r/m16, r16
* 09/r: OR r/m32, r32
*/
/* get the first operand */
error = memread(vcpu, gpa, &val1, size, arg);
if (error != 0) {
break;
}
/* get the second operand */
reg = vie->reg;
error = vm_get_register(vcpu, reg, &val2);
if (error != 0) {
break;
}
/* perform the operation and write the result */
result = val1 | val2;
result &= size2mask[size];
error = memwrite(vcpu, gpa, result, size, arg);
break;
default:
break;
}
if (error != 0) {
return error;
}
/*
* OF and CF are cleared; the SF, ZF and PF flags are set according
* to the result; AF is undefined.
*
* The updated status flags are obtained by subtracting 0 from 'result'.
*/
rflags2 = getcc(size, result, 0UL);
error = vie_update_rflags(vcpu, rflags2, PSL_PF | PSL_Z | PSL_N);
return error;
}
static int
emulate_cmp(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *arg)
{
int error;
uint8_t size;
uint64_t regop, memop, op1, op2, rflags2;
enum cpu_reg_name reg;
size = vie->opsize;
switch (vie->opcode) {
case 0x39U:
case 0x3BU:
/*
* 39/r CMP r/m16, r16
* 39/r CMP r/m32, r32
* REX.W 39/r CMP r/m64, r64
*
* 3B/r CMP r16, r/m16
* 3B/r CMP r32, r/m32
* REX.W + 3B/r CMP r64, r/m64
*
* Compare the first operand with the second operand and
* set status flags in EFLAGS register. The comparison
* is performed by subtracting the second operand from
* the first operand and then setting the status flags.
*/
/* Get the register operand */
reg = vie->reg;
error = vm_get_register(vcpu, reg, &regop);
if (error != 0) {
return error;
}
/* Get the memory operand */
error = memread(vcpu, gpa, &memop, size, arg);
if (error != 0) {
return error;
}
if (vie->opcode == 0x3BU) {
op1 = regop;
op2 = memop;
} else {
op1 = memop;
op2 = regop;
}
rflags2 = getcc(size, op1, op2);
break;
case 0x80U:
case 0x81U:
case 0x83U:
/*
* 80 /7 cmp r/m8, imm8
* REX + 80 /7 cmp r/m8, imm8
*
* 81 /7 cmp r/m16, imm16
* 81 /7 cmp r/m32, imm32
* REX.W + 81 /7 cmp r/m64, imm32 sign-extended
* to 64
*
* 83 /7 cmp r/m16, imm8 sign-extended
* to 16
* 83 /7 cmp r/m32, imm8 sign-extended
* to 32
* REX.W + 83 /7 cmp r/m64, imm8 sign-extended
* to 64
*
* Compare mem (ModRM:r/m) with immediate and set
* status flags according to the results. The
* comparison is performed by subtracting the
* immediate from the first operand and then setting
* the status flags.
*
*/
if (vie->opcode == 0x80U) {
size = 1U;
}
/* get the first operand */
error = memread(vcpu, gpa, &op1, size, arg);
if (error != 0) {
return error;
}
rflags2 = getcc(size, op1, (uint64_t)vie->immediate);
break;
default:
return -EINVAL;
}
error = vie_update_rflags(vcpu, rflags2, RFLAGS_STATUS_BITS);
return error;
}
static int
emulate_sub(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *arg)
{
int error;
uint8_t size;
uint64_t nval, rflags2, val1, val2;
enum cpu_reg_name reg;
size = vie->opsize;
error = -EINVAL;
switch (vie->opcode) {
case 0x2BU:
/*
* SUB r/m from r and store the result in r
*
* 2B/r SUB r16, r/m16
* 2B/r SUB r32, r/m32
* REX.W + 2B/r SUB r64, r/m64
*/
/* get the first operand */
reg = vie->reg;
error = vm_get_register(vcpu, reg, &val1);
if (error != 0) {
break;
}
/* get the second operand */
error = memread(vcpu, gpa, &val2, size, arg);
if (error != 0) {
break;
}
/* perform the operation and write the result */
nval = val1 - val2;
error = vie_update_register(vcpu, reg, nval,
size);
break;
default:
break;
}
if (error != 0) {
return error;
}
rflags2 = getcc(size, val1, val2);
error = vie_update_rflags(vcpu, rflags2, RFLAGS_STATUS_BITS);
return error;
}
static int
emulate_stack_op(struct vcpu *vcpu, uint64_t mmio_gpa, struct instr_emul_vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
struct seg_desc ss_desc;
uint64_t cr0, rflags, rsp, stack_gla, stack_gpa, val;
int error, pushop;
uint8_t size, stackaddrsize;
uint32_t err_code = 0U;
(void)memset(&ss_desc, 0U, sizeof(ss_desc));
val = 0UL;
size = vie->opsize;
pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
/*
* From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
*/
if (paging->cpu_mode == CPU_MODE_REAL) {
stackaddrsize = 2U;
} else if (paging->cpu_mode == CPU_MODE_64BIT) {
/*
* "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
* - Stack pointer size is always 64-bits.
* - PUSH/POP of 32-bit values is not possible in 64-bit mode.
* - 16-bit PUSH/POP is supported by using the operand size
* override prefix (66H).
*/
stackaddrsize = 8U;
size = (vie->opsize_override != 0U) ? 2U : 8U;
} else {
/*
* In protected or compatibility mode the 'B' flag in the
* stack-segment descriptor determines the size of the
* stack pointer.
*/
error = vm_get_seg_desc(vcpu, CPU_REG_SS, &ss_desc);
ASSERT(error == 0, "%s: error %d getting SS descriptor",
__func__, error);
if (SEG_DESC_DEF32(ss_desc.access)) {
stackaddrsize = 4U;
} else {
stackaddrsize = 2U;
}
}
error = vm_get_register(vcpu, CPU_REG_CR0, &cr0);
error = vm_get_register(vcpu, CPU_REG_RFLAGS, &rflags);
error = vm_get_register(vcpu, CPU_REG_RSP, &rsp);
if (pushop != 0) {
rsp -= size;
}
if (vie_calculate_gla(paging->cpu_mode, CPU_REG_SS, &ss_desc,
rsp, size, stackaddrsize, (pushop != 0)? PROT_WRITE : PROT_READ,
&stack_gla) != 0) {
/*vm_inject_ss(vcpu, 0);*/
pr_err("TODO: inject ss exception");
}
if (vie_canonical_check(paging->cpu_mode, stack_gla) != 0) {
/*vm_inject_ss(vcpu, 0);*/
pr_err("TODO: inject ss exception");
}
if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)
!= 0) {
/*vm_inject_ac(vcpu, 0);*/
pr_err("TODO: inject ac exception");
return 0;
}
/* TODO: currently emulate_instruction is only for mmio, so here
* stack_gpa actually is unused for mmio_write & mmio_read, need
* take care of data trans if stack_gpa be used for memwrite in
* the future.
*/
if (pushop != 0) {
err_code |= PAGE_FAULT_WR_FLAG;
}
error = gva2gpa(vcpu, stack_gla, &stack_gpa, &err_code);
if (error < 0) {
if (error == -EFAULT) {
vcpu_inject_pf(vcpu, stack_gla, err_code);
}
return error;
}
if (pushop != 0) {
error = memread(vcpu, mmio_gpa, &val, size, arg);
if (error == 0) {
error = memwrite(vcpu, stack_gpa, val, size, arg);
}
} else {
error = memread(vcpu, stack_gpa, &val, size, arg);
if (error == 0) {
error = memwrite(vcpu, mmio_gpa, val, size, arg);
}
rsp += size;
}
if (error == 0) {
error = vie_update_register(vcpu, CPU_REG_RSP, rsp,
stackaddrsize);
}
return error;
}
static int
emulate_push(struct vcpu *vcpu, uint64_t mmio_gpa, struct instr_emul_vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error;
/*
* Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
*
* PUSH is part of the group 5 extended opcodes and is identified
* by ModRM:reg = b110.
*/
if ((vie->reg & 7U) != 6U) {
return -EINVAL;
}
error = emulate_stack_op(vcpu, mmio_gpa, vie, paging, memread,
memwrite, arg);
return error;
}
static int
emulate_pop(struct vcpu *vcpu, uint64_t mmio_gpa, struct instr_emul_vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *arg)
{
int error;
/*
* Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
*
* POP is part of the group 1A extended opcodes and is identified
* by ModRM:reg = b000.
*/
if ((vie->reg & 7U) != 0) {
return -EINVAL;
}
error = emulate_stack_op(vcpu, mmio_gpa, vie, paging, memread,
memwrite, arg);
return error;
}
static int
emulate_group1(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
__unused struct vm_guest_paging *paging,
mem_region_read_t memread,
mem_region_write_t memwrite, void *memarg)
{
int error;
switch (vie->reg & 7U) {
case 0x1U: /* OR */
error = emulate_or(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case 0x4U: /* AND */
error = emulate_and(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case 0x7U: /* CMP */
error = emulate_cmp(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
default:
error = EINVAL;
break;
}
return error;
}
static int
emulate_bittest(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
mem_region_read_t memread, __unused mem_region_write_t memwrite,
void *memarg)
{
uint64_t val, rflags, bitmask;
int error;
uint64_t bitoff;
uint8_t size;
/*
* 0F BA is a Group 8 extended opcode.
*
* Currently we only emulate the 'Bit Test' instruction which is
* identified by a ModR/M:reg encoding of 100b.
*/
if ((vie->reg & 7U) != 4U) {
return -EINVAL;
}
error = vm_get_register(vcpu, CPU_REG_RFLAGS, &rflags);
error = memread(vcpu, gpa, &val, vie->opsize, memarg);
if (error != 0) {
return error;
}
/*
* Intel SDM, Vol 2, Table 3-2:
* "Range of Bit Positions Specified by Bit Offset Operands"
*/
bitmask = ((uint64_t)vie->opsize * 8UL) - 1UL;
bitoff = (uint64_t)vie->immediate & bitmask;
/* Copy the bit into the Carry flag in %rflags */
if ((val & (1UL << bitoff)) != 0U) {
rflags |= PSL_C;
} else {
rflags &= ~PSL_C;
}
size = 8U;
error = vie_update_register(vcpu, CPU_REG_RFLAGS, rflags, size);
return 0;
}
int
vmm_emulate_instruction(struct vcpu *vcpu, uint64_t gpa, struct instr_emul_vie *vie,
struct vm_guest_paging *paging, mem_region_read_t memread,
mem_region_write_t memwrite, void *memarg)
{
int error;
if (vie->decoded == 0U) {
return -EINVAL;
}
switch (vie->op.op_type) {
case VIE_OP_TYPE_GROUP1:
error = emulate_group1(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_POP:
error = emulate_pop(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_PUSH:
error = emulate_push(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_CMP:
error = emulate_cmp(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOV:
error = emulate_mov(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOVSX:
case VIE_OP_TYPE_MOVZX:
error = emulate_movx(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_MOVS:
error = emulate_movs(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_STOS:
error = emulate_stos(vcpu, gpa, vie, paging,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_AND:
error = emulate_and(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_TEST:
error = emulate_test(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_OR:
error = emulate_or(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_SUB:
error = emulate_sub(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
case VIE_OP_TYPE_BITTEST:
error = emulate_bittest(vcpu, gpa, vie,
memread, memwrite, memarg);
break;
default:
error = -EINVAL;
break;
}
return error;
}
int
vie_alignment_check(uint8_t cpl, uint8_t size, uint64_t cr0, uint64_t rf,
uint64_t gla)
{
ASSERT(size == 1U || size == 2U || size == 4U || size == 8U,
"%s: invalid size %hhu", __func__, size);
ASSERT(cpl <= 3U, "%s: invalid cpl %d", __func__, cpl);
if (cpl != 3U || (cr0 & CR0_AM) == 0UL || (rf & PSL_AC) == 0UL) {
return 0;
}
return ((gla & (size - 1U)) != 0UL) ? 1 : 0;
}
int
vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
{
uint64_t mask;
if (cpu_mode != CPU_MODE_64BIT) {
return 0;
}
/*
* The value of the bit 47 in the 'gla' should be replicated in the
* most significant 16 bits.
*/
mask = ~((1UL << 48) - 1);
if ((gla & (1UL << 47)) != 0U) {
return ((gla & mask) != mask) ? 1 : 0;
} else {
return ((gla & mask) != 0U) ? 1 : 0;
}
}
int
vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum cpu_reg_name seg,
struct seg_desc *desc, uint64_t offset_arg, uint8_t length_arg,
uint8_t addrsize, uint32_t prot, uint64_t *gla)
{
uint64_t firstoff, low_limit, high_limit, segbase;
uint64_t offset = offset_arg;
uint8_t length = length_arg;
uint8_t glasize;
uint32_t type;
ASSERT((seg >= CPU_REG_SEG_FIRST) && (seg <= CPU_REG_SEG_LAST),
"%s: invalid segment %d", __func__, seg);
ASSERT(length == 1U || length == 2U || length == 4U || length == 8U,
"%s: invalid operand size %hhu", __func__, length);
ASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0U,
"%s: invalid prot %#x", __func__, prot);
firstoff = offset;
if (cpu_mode == CPU_MODE_64BIT) {
ASSERT(addrsize == 4U || addrsize == 8U,
"%s: invalid address size %d for cpu_mode %d",
__func__, addrsize, cpu_mode);
glasize = 8U;
} else {
ASSERT(addrsize == 2U || addrsize == 4U,
"%s: invalid address size %d for cpu mode %d",
__func__, addrsize, cpu_mode);
glasize = 4U;
/*
* If the segment selector is loaded with a NULL selector
* then the descriptor is unusable and attempting to use
* it results in a #GP(0).
*/
if (SEG_DESC_UNUSABLE(desc->access)) {
return -1;
}
/*
* The processor generates a #NP exception when a segment
* register is loaded with a selector that points to a
* descriptor that is not present. If this was the case then
* it would have been checked before the VM-exit.
*/
ASSERT(SEG_DESC_PRESENT(desc->access),
"segment %d not present: %#x", seg, desc->access);
/*
* The descriptor type must indicate a code/data segment.
*/
type = SEG_DESC_TYPE(desc->access);
ASSERT(type >= 16U && type <= 31U,
"segment %d has invalid descriptor type %#x",
seg, type);
if ((prot & PROT_READ) != 0U) {
/* #GP on a read access to a exec-only code segment */
if ((type & 0xAU) == 0x8U) {
return -1;
}
}
if ((prot & PROT_WRITE) != 0U) {
/*
* #GP on a write access to a code segment or a
* read-only data segment.
*/
if ((type & 0x8U) != 0U) { /* code segment */
return -1;
}
if ((type & 0xAU) == 0U) { /* read-only data seg */
return -1;
}
}
/*
* 'desc->limit' is fully expanded taking granularity into
* account.
*/
if ((type & 0xCU) == 0x4U) {
/* expand-down data segment */
low_limit = desc->limit + 1U;
high_limit = SEG_DESC_DEF32(desc->access) ?
0xffffffffU : 0xffffU;
} else {
/* code segment or expand-up data segment */
low_limit = 0U;
high_limit = desc->limit;
}
while (length > 0U) {
offset &= size2mask[addrsize];
if (offset < low_limit || offset > high_limit) {
return -1;
}
offset++;
length--;
}
}
/*
* In 64-bit mode all segments except %fs and %gs have a segment
* base address of 0.
*/
if (cpu_mode == CPU_MODE_64BIT && seg != CPU_REG_FS &&
seg != CPU_REG_GS) {
segbase = 0UL;
} else {
segbase = desc->base;
}
/*
* Truncate 'firstoff' to the effective address size before adding
* it to the segment base.
*/
firstoff &= size2mask[addrsize];
*gla = (segbase + firstoff) & size2mask[glasize];
return 0;
}
int
vie_init(struct instr_emul_vie *vie, struct vcpu *vcpu)
{
uint64_t guest_rip_gva =
vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context].rip;
uint32_t inst_len = vcpu->arch_vcpu.inst_len;
uint32_t err_code;
int ret;
if (inst_len > VIE_INST_SIZE || inst_len == 0U) {
pr_err("%s: invalid instruction length (%d)",
__func__, inst_len);
return -EINVAL;
}
(void)memset(vie, 0U, sizeof(struct instr_emul_vie));
err_code = PAGE_FAULT_ID_FLAG;
ret = copy_from_gva(vcpu, vie->inst, guest_rip_gva,
inst_len, &err_code);
if (ret < 0) {
if (ret == -EFAULT) {
vcpu_inject_pf(vcpu, guest_rip_gva, err_code);
}
return ret;
}
vie->num_valid = (uint8_t)inst_len;
return 0;
}
static int
vie_peek(struct instr_emul_vie *vie, uint8_t *x)
{
if (vie->num_processed < vie->num_valid) {
*x = vie->inst[vie->num_processed];
return 0;
} else {
return -1;
}
}
static void
vie_advance(struct instr_emul_vie *vie)
{
vie->num_processed++;
}
static bool
segment_override(uint8_t x, enum cpu_reg_name *seg)
{
switch (x) {
case 0x2EU:
*seg = CPU_REG_CS;
break;
case 0x36U:
*seg = CPU_REG_SS;
break;
case 0x3EU:
*seg = CPU_REG_DS;
break;
case 0x26U:
*seg = CPU_REG_ES;
break;
case 0x64U:
*seg = CPU_REG_FS;
break;
case 0x65U:
*seg = CPU_REG_GS;
break;
default:
return false;
}
return true;
}
static int
decode_prefixes(struct instr_emul_vie *vie, enum vm_cpu_mode cpu_mode, bool cs_d)
{
uint8_t x;
while (1) {
if (vie_peek(vie, &x) != 0) {
return -1;
}
if (x == 0x66U) {
vie->opsize_override = 1U;
} else if (x == 0x67U) {
vie->addrsize_override = 1U;
} else if (x == 0xF3U) {
vie->repz_present = 1U;
} else if (x == 0xF2U) {
vie->repnz_present = 1U;
} else if (segment_override(x, &vie->segment_register)) {
vie->seg_override = 1U;
} else {
break;
}
vie_advance(vie);
}
/*
* From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
* - Only one REX prefix is allowed per instruction.
* - The REX prefix must immediately precede the opcode byte or the
* escape opcode byte.
* - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
* the mandatory prefix must come before the REX prefix.
*/
if (cpu_mode == CPU_MODE_64BIT && x >= 0x40U && x <= 0x4FU) {
vie->rex_present = 1U;
vie->rex_w = (x & 0x8U) != 0U ? 1U : 0U;
vie->rex_r = (x & 0x4U) != 0U ? 1U : 0U;
vie->rex_x = (x & 0x2U) != 0U ? 1U : 0U;
vie->rex_b = (x & 0x1U) != 0U ? 1U : 0U;
vie_advance(vie);
}
/*
* Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
*/
if (cpu_mode == CPU_MODE_64BIT) {
/*
* Default address size is 64-bits and default operand size
* is 32-bits.
*/
vie->addrsize = (vie->addrsize_override != 0U)? 4U : 8U;
if (vie->rex_w != 0U) {
vie->opsize = 8U;
} else if (vie->opsize_override != 0U) {
vie->opsize = 2U;
} else {
vie->opsize = 4U;
}
} else if (cs_d) {
/* Default address and operand sizes are 32-bits */
vie->addrsize = vie->addrsize_override != 0U ? 2U : 4U;
vie->opsize = vie->opsize_override != 0U ? 2U : 4U;
} else {
/* Default address and operand sizes are 16-bits */
vie->addrsize = vie->addrsize_override != 0U ? 4U : 2U;
vie->opsize = vie->opsize_override != 0U ? 4U : 2U;
}
return 0;
}
static int
decode_two_byte_opcode(struct instr_emul_vie *vie)
{
uint8_t x;
if (vie_peek(vie, &x) != 0) {
return -1;
}
vie->op = two_byte_opcodes[x];
if (vie->op.op_type == VIE_OP_TYPE_NONE) {
return -1;
}
vie_advance(vie);
return 0;
}
static int
decode_opcode(struct instr_emul_vie *vie)
{
uint8_t x;
if (vie_peek(vie, &x) != 0) {
return -1;
}
vie->opcode = x;
vie->op = one_byte_opcodes[x];
if (vie->op.op_type == VIE_OP_TYPE_NONE) {
return -1;
}
vie_advance(vie);
if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE) {
return decode_two_byte_opcode(vie);
}
return 0;
}
static int
decode_modrm(struct instr_emul_vie *vie, enum vm_cpu_mode cpu_mode)
{
uint8_t x;
if ((vie->op.op_flags & VIE_OP_F_NO_MODRM) != 0U) {
return 0;
}
if (cpu_mode == CPU_MODE_REAL) {
return -1;
}
if (vie_peek(vie, &x) != 0) {
return -1;
}
vie->mod = (x >> 6) & 0x3U;
vie->rm = (x >> 0) & 0x7U;
vie->reg = (x >> 3) & 0x7U;
/*
* A direct addressing mode makes no sense in the context of an EPT
* fault. There has to be a memory access involved to cause the
* EPT fault.
*/
if (vie->mod == VIE_MOD_DIRECT) {
return -1;
}
if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
(vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
/*
* Table 2-5: Special Cases of REX Encodings
*
* mod=0, r/m=5 is used in the compatibility mode to
* indicate a disp32 without a base register.
*
* mod!=3, r/m=4 is used in the compatibility mode to
* indicate that the SIB byte is present.
*
* The 'b' bit in the REX prefix is don't care in
* this case.
*/
} else {
vie->rm |= (vie->rex_b << 3);
}
vie->reg |= (vie->rex_r << 3);
vie_advance(vie);
return 0;
}
static int
decode_sib(struct instr_emul_vie *vie)
{
uint8_t x;
/* Proceed only if SIB byte is present */
if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB) {
return 0;
}
if (vie_peek(vie, &x) != 0) {
return -1;
}
/* De-construct the SIB byte */
vie->ss = (x >> 6) & 0x3U;
vie->index = (x >> 3) & 0x7U;
vie->base = (x >> 0) & 0x7U;
/* Apply the REX prefix modifiers */
vie->index |= vie->rex_x << 3;
vie->base |= vie->rex_b << 3;
switch (vie->mod) {
case VIE_MOD_INDIRECT_DISP8:
vie->disp_bytes = 1U;
break;
case VIE_MOD_INDIRECT_DISP32:
vie->disp_bytes = 4U;
break;
}
if (vie->mod == VIE_MOD_INDIRECT &&
(vie->base == 5U || vie->base == 13U)) {
/*
* Special case when base register is unused if mod = 0
* and base = %rbp or %r13.
*
* Documented in:
* Table 2-3: 32-bit Addressing Forms with the SIB Byte
* Table 2-5: Special Cases of REX Encodings
*/
vie->disp_bytes = 4U;
} else {
vie->base_register = vie->base;
}
/*
* All encodings of 'index' are valid except for %rsp (4).
*
* Documented in:
* Table 2-3: 32-bit Addressing Forms with the SIB Byte
* Table 2-5: Special Cases of REX Encodings
*/
if (vie->index != 4U) {
vie->index_register = vie->index;
}
/* 'scale' makes sense only in the context of an index register */
if (vie->index_register <= CPU_REG_LAST) {
vie->scale = 1U << vie->ss;
}
vie_advance(vie);
return 0;
}
static int
decode_displacement(struct instr_emul_vie *vie)
{
int n, i;
uint8_t x;
union {
uint8_t buf[4];
int8_t signed8;
int32_t signed32;
} u;
n = vie->disp_bytes;
if (n == 0) {
return 0;
}
if (n != 1 && n != 4) {
pr_err("%s: decode_displacement: invalid disp_bytes %d",
__func__, n);
return -EINVAL;
}
for (i = 0; i < n; i++) {
if (vie_peek(vie, &x) != 0) {
return -1;
}
u.buf[i] = x;
vie_advance(vie);
}
if (n == 1) {
vie->displacement = u.signed8; /* sign-extended */
} else {
vie->displacement = u.signed32; /* sign-extended */
}
return 0;
}
static int
decode_immediate(struct instr_emul_vie *vie)
{
int i, n;
uint8_t x;
union {
uint8_t buf[4];
int8_t signed8;
int16_t signed16;
int32_t signed32;
} u;
/* Figure out immediate operand size (if any) */
if ((vie->op.op_flags & VIE_OP_F_IMM) != 0U) {
/*
* Section 2.2.1.5 "Immediates", Intel SDM:
* In 64-bit mode the typical size of immediate operands
* remains 32-bits. When the operand size if 64-bits, the
* processor sign-extends all immediates to 64-bits prior
* to their use.
*/
if (vie->opsize == 4U || vie->opsize == 8U) {
vie->imm_bytes = 4U;
}
else {
vie->imm_bytes = 2U;
}
} else if ((vie->op.op_flags & VIE_OP_F_IMM8) != 0U) {
vie->imm_bytes = 1U;
} else {
/* No op_flag on immediate operand size */
}
n = vie->imm_bytes;
if (n == 0) {
return 0;
}
if ( n != 1 && n != 2 && n != 4) {
pr_err("%s: invalid number of immediate bytes: %d",
__func__, n);
return -EINVAL;
}
for (i = 0; i < n; i++) {
if (vie_peek(vie, &x) != 0) {
return -1;
}
u.buf[i] = x;
vie_advance(vie);
}
/* sign-extend the immediate value before use */
if (n == 1) {
vie->immediate = u.signed8;
} else if (n == 2) {
vie->immediate = u.signed16;
} else {
vie->immediate = u.signed32;
}
return 0;
}
static int
decode_moffset(struct instr_emul_vie *vie)
{
uint8_t i, n, x;
union {
uint8_t buf[8];
uint64_t u64;
} u;
if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0U) {
return 0;
}
/*
* Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
* The memory offset size follows the address-size of the instruction.
*/
n = vie->addrsize;
if ( n != 2U && n != 4U && n != 8U) {
pr_err("%s: invalid moffset bytes: %hhu", __func__, n);
return -EINVAL;
}
u.u64 = 0UL;
for (i = 0U; i < n; i++) {
if (vie_peek(vie, &x) != 0) {
return -1;
}
u.buf[i] = x;
vie_advance(vie);
}
vie->displacement = (int64_t)u.u64;
return 0;
}
int
local_decode_instruction(enum vm_cpu_mode cpu_mode, bool cs_d, struct instr_emul_vie *vie)
{
if (decode_prefixes(vie, cpu_mode, cs_d) != 0) {
return -1;
}
if (decode_opcode(vie) != 0) {
return -1;
}
if (decode_modrm(vie, cpu_mode) != 0) {
return -1;
}
if (decode_sib(vie) != 0) {
return -1;
}
if (decode_displacement(vie) != 0) {
return -1;
}
if (decode_immediate(vie) != 0) {
return -1;
}
if (decode_moffset(vie) != 0) {
return -1;
}
vie->decoded = 1U; /* success */
return 0;
}