mirror of
https://github.com/kubernetes/client-go.git
synced 2026-01-29 21:38:35 +00:00
Generate and format files
- Run hack/update-codegen.sh - Run hack/update-generated-device-plugin.sh - Run hack/update-generated-protobuf.sh - Run hack/update-generated-runtime.sh - Run hack/update-generated-swagger-docs.sh - Run hack/update-openapi-spec.sh - Run hack/update-gofmt.sh Signed-off-by: Davanum Srinivas <davanum@gmail.com> Kubernetes-commit: a9593d634c6a053848413e600dadbf974627515f
This commit is contained in:
committed by
Kubernetes Publisher
parent
b5c7588f8a
commit
2a6c116e40
@@ -45,20 +45,20 @@ client.Client from an authcfg.Info.
|
||||
|
||||
Example:
|
||||
|
||||
import (
|
||||
"pkg/client"
|
||||
"pkg/client/auth"
|
||||
)
|
||||
import (
|
||||
"pkg/client"
|
||||
"pkg/client/auth"
|
||||
)
|
||||
|
||||
info, err := auth.LoadFromFile(filename)
|
||||
if err != nil {
|
||||
// handle error
|
||||
}
|
||||
clientConfig = client.Config{}
|
||||
clientConfig.Host = "example.com:4901"
|
||||
clientConfig = info.MergeWithConfig()
|
||||
client := client.New(clientConfig)
|
||||
client.Pods(ns).List()
|
||||
info, err := auth.LoadFromFile(filename)
|
||||
if err != nil {
|
||||
// handle error
|
||||
}
|
||||
clientConfig = client.Config{}
|
||||
clientConfig.Host = "example.com:4901"
|
||||
clientConfig = info.MergeWithConfig()
|
||||
client := client.New(clientConfig)
|
||||
client.Pods(ns).List()
|
||||
*/
|
||||
package auth
|
||||
|
||||
|
||||
77
tools/cache/controller.go
vendored
77
tools/cache/controller.go
vendored
@@ -199,17 +199,17 @@ func (c *controller) processLoop() {
|
||||
// can't return an error. The handlers MUST NOT modify the objects
|
||||
// received; this concerns not only the top level of structure but all
|
||||
// the data structures reachable from it.
|
||||
// * OnAdd is called when an object is added.
|
||||
// * OnUpdate is called when an object is modified. Note that oldObj is the
|
||||
// last known state of the object-- it is possible that several changes
|
||||
// were combined together, so you can't use this to see every single
|
||||
// change. OnUpdate is also called when a re-list happens, and it will
|
||||
// get called even if nothing changed. This is useful for periodically
|
||||
// evaluating or syncing something.
|
||||
// * OnDelete will get the final state of the item if it is known, otherwise
|
||||
// it will get an object of type DeletedFinalStateUnknown. This can
|
||||
// happen if the watch is closed and misses the delete event and we don't
|
||||
// notice the deletion until the subsequent re-list.
|
||||
// - OnAdd is called when an object is added.
|
||||
// - OnUpdate is called when an object is modified. Note that oldObj is the
|
||||
// last known state of the object-- it is possible that several changes
|
||||
// were combined together, so you can't use this to see every single
|
||||
// change. OnUpdate is also called when a re-list happens, and it will
|
||||
// get called even if nothing changed. This is useful for periodically
|
||||
// evaluating or syncing something.
|
||||
// - OnDelete will get the final state of the item if it is known, otherwise
|
||||
// it will get an object of type DeletedFinalStateUnknown. This can
|
||||
// happen if the watch is closed and misses the delete event and we don't
|
||||
// notice the deletion until the subsequent re-list.
|
||||
type ResourceEventHandler interface {
|
||||
OnAdd(obj interface{})
|
||||
OnUpdate(oldObj, newObj interface{})
|
||||
@@ -305,15 +305,14 @@ func DeletionHandlingMetaNamespaceKeyFunc(obj interface{}) (string, error) {
|
||||
// notifications to be faulty.
|
||||
//
|
||||
// Parameters:
|
||||
// * lw is list and watch functions for the source of the resource you want to
|
||||
// be informed of.
|
||||
// * objType is an object of the type that you expect to receive.
|
||||
// * resyncPeriod: if non-zero, will re-list this often (you will get OnUpdate
|
||||
// calls, even if nothing changed). Otherwise, re-list will be delayed as
|
||||
// long as possible (until the upstream source closes the watch or times out,
|
||||
// or you stop the controller).
|
||||
// * h is the object you want notifications sent to.
|
||||
//
|
||||
// - lw is list and watch functions for the source of the resource you want to
|
||||
// be informed of.
|
||||
// - objType is an object of the type that you expect to receive.
|
||||
// - resyncPeriod: if non-zero, will re-list this often (you will get OnUpdate
|
||||
// calls, even if nothing changed). Otherwise, re-list will be delayed as
|
||||
// long as possible (until the upstream source closes the watch or times out,
|
||||
// or you stop the controller).
|
||||
// - h is the object you want notifications sent to.
|
||||
func NewInformer(
|
||||
lw ListerWatcher,
|
||||
objType runtime.Object,
|
||||
@@ -332,16 +331,15 @@ func NewInformer(
|
||||
// notifications to be faulty.
|
||||
//
|
||||
// Parameters:
|
||||
// * lw is list and watch functions for the source of the resource you want to
|
||||
// be informed of.
|
||||
// * objType is an object of the type that you expect to receive.
|
||||
// * resyncPeriod: if non-zero, will re-list this often (you will get OnUpdate
|
||||
// calls, even if nothing changed). Otherwise, re-list will be delayed as
|
||||
// long as possible (until the upstream source closes the watch or times out,
|
||||
// or you stop the controller).
|
||||
// * h is the object you want notifications sent to.
|
||||
// * indexers is the indexer for the received object type.
|
||||
//
|
||||
// - lw is list and watch functions for the source of the resource you want to
|
||||
// be informed of.
|
||||
// - objType is an object of the type that you expect to receive.
|
||||
// - resyncPeriod: if non-zero, will re-list this often (you will get OnUpdate
|
||||
// calls, even if nothing changed). Otherwise, re-list will be delayed as
|
||||
// long as possible (until the upstream source closes the watch or times out,
|
||||
// or you stop the controller).
|
||||
// - h is the object you want notifications sent to.
|
||||
// - indexers is the indexer for the received object type.
|
||||
func NewIndexerInformer(
|
||||
lw ListerWatcher,
|
||||
objType runtime.Object,
|
||||
@@ -454,16 +452,15 @@ func processDeltas(
|
||||
// providing event notifications.
|
||||
//
|
||||
// Parameters
|
||||
// * lw is list and watch functions for the source of the resource you want to
|
||||
// be informed of.
|
||||
// * objType is an object of the type that you expect to receive.
|
||||
// * resyncPeriod: if non-zero, will re-list this often (you will get OnUpdate
|
||||
// calls, even if nothing changed). Otherwise, re-list will be delayed as
|
||||
// long as possible (until the upstream source closes the watch or times out,
|
||||
// or you stop the controller).
|
||||
// * h is the object you want notifications sent to.
|
||||
// * clientState is the store you want to populate
|
||||
//
|
||||
// - lw is list and watch functions for the source of the resource you want to
|
||||
// be informed of.
|
||||
// - objType is an object of the type that you expect to receive.
|
||||
// - resyncPeriod: if non-zero, will re-list this often (you will get OnUpdate
|
||||
// calls, even if nothing changed). Otherwise, re-list will be delayed as
|
||||
// long as possible (until the upstream source closes the watch or times out,
|
||||
// or you stop the controller).
|
||||
// - h is the object you want notifications sent to.
|
||||
// - clientState is the store you want to populate
|
||||
func newInformer(
|
||||
lw ListerWatcher,
|
||||
objType runtime.Object,
|
||||
|
||||
38
tools/cache/delta_fifo.go
vendored
38
tools/cache/delta_fifo.go
vendored
@@ -74,11 +74,11 @@ type DeltaFIFOOptions struct {
|
||||
// the Pop() method.
|
||||
//
|
||||
// DeltaFIFO solves this use case:
|
||||
// * You want to process every object change (delta) at most once.
|
||||
// * When you process an object, you want to see everything
|
||||
// that's happened to it since you last processed it.
|
||||
// * You want to process the deletion of some of the objects.
|
||||
// * You might want to periodically reprocess objects.
|
||||
// - You want to process every object change (delta) at most once.
|
||||
// - When you process an object, you want to see everything
|
||||
// that's happened to it since you last processed it.
|
||||
// - You want to process the deletion of some of the objects.
|
||||
// - You might want to periodically reprocess objects.
|
||||
//
|
||||
// DeltaFIFO's Pop(), Get(), and GetByKey() methods return
|
||||
// interface{} to satisfy the Store/Queue interfaces, but they
|
||||
@@ -179,21 +179,21 @@ type Deltas []Delta
|
||||
// "known" keys when Pop() is called. Have to think about how that
|
||||
// affects error retrying.
|
||||
//
|
||||
// NOTE: It is possible to misuse this and cause a race when using an
|
||||
// external known object source.
|
||||
// Whether there is a potential race depends on how the consumer
|
||||
// modifies knownObjects. In Pop(), process function is called under
|
||||
// lock, so it is safe to update data structures in it that need to be
|
||||
// in sync with the queue (e.g. knownObjects).
|
||||
// NOTE: It is possible to misuse this and cause a race when using an
|
||||
// external known object source.
|
||||
// Whether there is a potential race depends on how the consumer
|
||||
// modifies knownObjects. In Pop(), process function is called under
|
||||
// lock, so it is safe to update data structures in it that need to be
|
||||
// in sync with the queue (e.g. knownObjects).
|
||||
//
|
||||
// Example:
|
||||
// In case of sharedIndexInformer being a consumer
|
||||
// (https://github.com/kubernetes/kubernetes/blob/0cdd940f/staging/src/k8s.io/client-go/tools/cache/shared_informer.go#L192),
|
||||
// there is no race as knownObjects (s.indexer) is modified safely
|
||||
// under DeltaFIFO's lock. The only exceptions are GetStore() and
|
||||
// GetIndexer() methods, which expose ways to modify the underlying
|
||||
// storage. Currently these two methods are used for creating Lister
|
||||
// and internal tests.
|
||||
// Example:
|
||||
// In case of sharedIndexInformer being a consumer
|
||||
// (https://github.com/kubernetes/kubernetes/blob/0cdd940f/staging/src/k8s.io/client-go/tools/cache/shared_informer.go#L192),
|
||||
// there is no race as knownObjects (s.indexer) is modified safely
|
||||
// under DeltaFIFO's lock. The only exceptions are GetStore() and
|
||||
// GetIndexer() methods, which expose ways to modify the underlying
|
||||
// storage. Currently these two methods are used for creating Lister
|
||||
// and internal tests.
|
||||
//
|
||||
// Also see the comment on DeltaFIFO.
|
||||
//
|
||||
|
||||
15
tools/cache/expiration_cache.go
vendored
15
tools/cache/expiration_cache.go
vendored
@@ -25,13 +25,14 @@ import (
|
||||
)
|
||||
|
||||
// ExpirationCache implements the store interface
|
||||
// 1. All entries are automatically time stamped on insert
|
||||
// a. The key is computed based off the original item/keyFunc
|
||||
// b. The value inserted under that key is the timestamped item
|
||||
// 2. Expiration happens lazily on read based on the expiration policy
|
||||
// a. No item can be inserted into the store while we're expiring
|
||||
// *any* item in the cache.
|
||||
// 3. Time-stamps are stripped off unexpired entries before return
|
||||
// 1. All entries are automatically time stamped on insert
|
||||
// a. The key is computed based off the original item/keyFunc
|
||||
// b. The value inserted under that key is the timestamped item
|
||||
// 2. Expiration happens lazily on read based on the expiration policy
|
||||
// a. No item can be inserted into the store while we're expiring
|
||||
// *any* item in the cache.
|
||||
// 3. Time-stamps are stripped off unexpired entries before return
|
||||
//
|
||||
// Note that the ExpirationCache is inherently slower than a normal
|
||||
// threadSafeStore because it takes a write lock every time it checks if
|
||||
// an item has expired.
|
||||
|
||||
9
tools/cache/fifo.go
vendored
9
tools/cache/fifo.go
vendored
@@ -103,10 +103,11 @@ func Pop(queue Queue) interface{} {
|
||||
// recent version will be processed. This can't be done with a channel
|
||||
//
|
||||
// FIFO solves this use case:
|
||||
// * You want to process every object (exactly) once.
|
||||
// * You want to process the most recent version of the object when you process it.
|
||||
// * You do not want to process deleted objects, they should be removed from the queue.
|
||||
// * You do not want to periodically reprocess objects.
|
||||
// - You want to process every object (exactly) once.
|
||||
// - You want to process the most recent version of the object when you process it.
|
||||
// - You do not want to process deleted objects, they should be removed from the queue.
|
||||
// - You do not want to periodically reprocess objects.
|
||||
//
|
||||
// Compare with DeltaFIFO for other use cases.
|
||||
type FIFO struct {
|
||||
lock sync.RWMutex
|
||||
|
||||
8
tools/cache/index.go
vendored
8
tools/cache/index.go
vendored
@@ -28,10 +28,10 @@ import (
|
||||
// Delete).
|
||||
//
|
||||
// There are three kinds of strings here:
|
||||
// 1. a storage key, as defined in the Store interface,
|
||||
// 2. a name of an index, and
|
||||
// 3. an "indexed value", which is produced by an IndexFunc and
|
||||
// can be a field value or any other string computed from the object.
|
||||
// 1. a storage key, as defined in the Store interface,
|
||||
// 2. a name of an index, and
|
||||
// 3. an "indexed value", which is produced by an IndexFunc and
|
||||
// can be a field value or any other string computed from the object.
|
||||
type Indexer interface {
|
||||
Store
|
||||
// Index returns the stored objects whose set of indexed values
|
||||
|
||||
@@ -160,8 +160,10 @@ func NewDefaultClientConfigLoadingRules() *ClientConfigLoadingRules {
|
||||
|
||||
// Load starts by running the MigrationRules and then
|
||||
// takes the loading rules and returns a Config object based on following rules.
|
||||
// if the ExplicitPath, return the unmerged explicit file
|
||||
// Otherwise, return a merged config based on the Precedence slice
|
||||
//
|
||||
// if the ExplicitPath, return the unmerged explicit file
|
||||
// Otherwise, return a merged config based on the Precedence slice
|
||||
//
|
||||
// A missing ExplicitPath file produces an error. Empty filenames or other missing files are ignored.
|
||||
// Read errors or files with non-deserializable content produce errors.
|
||||
// The first file to set a particular map key wins and map key's value is never changed.
|
||||
|
||||
@@ -161,7 +161,7 @@ type LeaderElectionConfig struct {
|
||||
// lifecycle events of the LeaderElector. These are invoked asynchronously.
|
||||
//
|
||||
// possible future callbacks:
|
||||
// * OnChallenge()
|
||||
// - OnChallenge()
|
||||
type LeaderCallbacks struct {
|
||||
// OnStartedLeading is called when a LeaderElector client starts leading
|
||||
OnStartedLeading func(context.Context)
|
||||
|
||||
@@ -62,18 +62,18 @@ type ForwardedPort struct {
|
||||
}
|
||||
|
||||
/*
|
||||
valid port specifications:
|
||||
valid port specifications:
|
||||
|
||||
5000
|
||||
- forwards from localhost:5000 to pod:5000
|
||||
5000
|
||||
- forwards from localhost:5000 to pod:5000
|
||||
|
||||
8888:5000
|
||||
- forwards from localhost:8888 to pod:5000
|
||||
8888:5000
|
||||
- forwards from localhost:8888 to pod:5000
|
||||
|
||||
0:5000
|
||||
:5000
|
||||
- selects a random available local port,
|
||||
forwards from localhost:<random port> to pod:5000
|
||||
0:5000
|
||||
:5000
|
||||
- selects a random available local port,
|
||||
forwards from localhost:<random port> to pod:5000
|
||||
*/
|
||||
func parsePorts(ports []string) ([]ForwardedPort, error) {
|
||||
var forwards []ForwardedPort
|
||||
|
||||
@@ -235,10 +235,10 @@ type aggregateRecord struct {
|
||||
// EventAggregate checks if a similar event has been seen according to the
|
||||
// aggregation configuration (max events, max interval, etc) and returns:
|
||||
//
|
||||
// - The (potentially modified) event that should be created
|
||||
// - The cache key for the event, for correlation purposes. This will be set to
|
||||
// the full key for normal events, and to the result of
|
||||
// EventAggregatorMessageFunc for aggregate events.
|
||||
// - The (potentially modified) event that should be created
|
||||
// - The cache key for the event, for correlation purposes. This will be set to
|
||||
// the full key for normal events, and to the result of
|
||||
// EventAggregatorMessageFunc for aggregate events.
|
||||
func (e *EventAggregator) EventAggregate(newEvent *v1.Event) (*v1.Event, string) {
|
||||
now := metav1.NewTime(e.clock.Now())
|
||||
var record aggregateRecord
|
||||
@@ -427,14 +427,14 @@ type EventCorrelateResult struct {
|
||||
// prior to interacting with the API server to record the event.
|
||||
//
|
||||
// The default behavior is as follows:
|
||||
// * Aggregation is performed if a similar event is recorded 10 times
|
||||
// - Aggregation is performed if a similar event is recorded 10 times
|
||||
// in a 10 minute rolling interval. A similar event is an event that varies only by
|
||||
// the Event.Message field. Rather than recording the precise event, aggregation
|
||||
// will create a new event whose message reports that it has combined events with
|
||||
// the same reason.
|
||||
// * Events are incrementally counted if the exact same event is encountered multiple
|
||||
// - Events are incrementally counted if the exact same event is encountered multiple
|
||||
// times.
|
||||
// * A source may burst 25 events about an object, but has a refill rate budget
|
||||
// - A source may burst 25 events about an object, but has a refill rate budget
|
||||
// per object of 1 event every 5 minutes to control long-tail of spam.
|
||||
func NewEventCorrelator(clock clock.PassiveClock) *EventCorrelator {
|
||||
cacheSize := maxLruCacheEntries
|
||||
|
||||
@@ -101,7 +101,9 @@ func UntilWithoutRetry(ctx context.Context, watcher watch.Interface, conditions
|
||||
// It guarantees you to see all events and in the order they happened.
|
||||
// Due to this guarantee there is no way it can deal with 'Resource version too old error'. It will fail in this case.
|
||||
// (See `UntilWithSync` if you'd prefer to recover from all the errors including RV too old by re-listing
|
||||
// those items. In normal code you should care about being level driven so you'd not care about not seeing all the edges.)
|
||||
//
|
||||
// those items. In normal code you should care about being level driven so you'd not care about not seeing all the edges.)
|
||||
//
|
||||
// The most frequent usage for Until would be a test where you want to verify exact order of events ("edges").
|
||||
func Until(ctx context.Context, initialResourceVersion string, watcherClient cache.Watcher, conditions ...ConditionFunc) (*watch.Event, error) {
|
||||
w, err := NewRetryWatcher(initialResourceVersion, watcherClient)
|
||||
|
||||
Reference in New Issue
Block a user