Validate rule outputs when loading rules by attempting to create a
formatter based on the rule's output field. If there's an error, it will
propagate up through load_rules and cause falco to exit rather than
discover the problem only when trying to format the event and the rule's
output field.
This required moving formats.{cpp,h} into the falco engine directory
from the falco general directory. Note that these functions are loaded
twice in the two lua states used by falco (engine and outputs).
There's also a couple of minor cleanups:
- falco_formats had a private instance variable that was unused, remove
it.
- rename the package for the falco_formats functions to formats instead
of falco so it's more standalone.
- don't throw a c++ exception in falco_formats::formatter. Instead
generate a lua error, which is handled more cleanly.
- free_formatter doesn't return any values, so set the return value of
the function to 0.
container.info handling used to be handled by the the falco_outputs
object. However, this caused problems for applications that only used
the falco engine, doing their own output formatting for matching events.
Fix this by moving output formatting into the falco engine itself. The
part that replaces %container.info/adds extra formatting to the end of a
rule's output now happens while loading the rule.
Related to the changes in https://github.com/draios/agent/pull/267,
improve error messages when trying to load sets of rules with errors:
- Check that yaml parsing of rules_content actually resulted in
something.
- Return an error for rules that have an empty name.
- Return an error for yaml objects that aren't a rule/macro/list.
- When compiling, don't print an error message, simply return one,
including a wrapper "can not compile ..." string.
Instead of having FALCO_SHARE_DIR be a relative path, fully specify it
by prepending CMAKE_INSTALL_PREFIX in the top level CMakeLists.txt and
don't prepend CMAKE_INSTALL_PREFIX in config_falco_engine.h.in. This
makes it consistent with its use in the agent.
If a rule has a enabled attribute, and if the value is false, call the
engine's enable_rule() method to disable the rule. Like add_filter,
there's a static method which takes the object as the first argument and
a non-static method that calls the engine.
This fixes#72.
Add the ability to drop events at the falco engine level in a way that
can scale with the dropping that already occurs at the kernel/inspector
level.
New inline function should_drop_evt() controls whether or not events are
matched against the set of rules, and is controlled by two
values--sampling ratio and sampling multiplier.
Here's how the sampling ratio and multiplier influence whether or not an
event is dropped in should_drop_evt(). The intent is that
m_sampling_ratio is generally changing external to the engine e.g. in
the main inspector class based on how busy the inspector is. A sampling
ratio implies no dropping. Values > 1 imply increasing levels of
dropping. External to the engine, the sampling ratio results in events
being dropped at the kernel/inspector interface. The sampling
multiplier is an amplification to the sampling factor in
m_sampling_ratio. If 0, no additional events are dropped other than
those that might be dropped by the kernel/inspector interface. If 1,
events that make it past the kernel module are subject to an additional
level of dropping at the falco engine, scaling with the sampling ratio
in m_sampling_ratio.
Unlike the dropping that occurs at the kernel level, where the events in
the first part of each second are dropped, this dropping is random.
Move the c++ and lua code implementing falco engine/falco common to its
own directory userspace/engine. It's compiled as a static library
libfalco_engine.a, and has its own CMakeLists.txt so it can be included
by other projects.
The engine's CMakeLists.txt has a add_subdirectory for the falco rules
directory, so including the engine also builds the rules.
The variables you need to set to use the engine's CMakeLists.txt are:
- CMAKE_INSTALL_PREFIX: the root directory below which everything is
installed.
- FALCO_ETC_DIR: where to install the rules file.
- FALCO_SHARE_DIR: where to install lua code, relative to the
- install/package root.
- LUAJIT_INCLUDE: where to find header files for lua.
- FALCO_SINSP_LIBRARY: the library containing sinsp code. It will be
- considered a dependency of the engine.
- LPEG_LIB/LYAML_LIB/LIBYAML_LIB: locations for third-party libraries.
- FALCO_COMPONENT: if set, will be included as a part of any install()
commands.
Instead of specifying /usr/share/falco in config_falco_*.h.in, use
CMAKE_INSTALL_PREFIX and FALCO_SHARE_DIR.
The lua code for the engine has also moved, so the two lua source
directories (userspace/engine/lua and userspace/falco/lua) need to be
available separately via falco_common, so make it an argument to
falco_common::init.
As a part of making it easy to include in another project, also clean up
LPEG build/defs. Modify build-lpeg to add a PREFIX argument to allow for
object files/libraries being in an alternate location, and when building
lpeg, put object files in a build/ subdirectory.